Шпаргалка: Коллоквиум Пищеварение

Тема: Коллоквиум Пищеварение

Дата добавления на сайт: 21 июля 2024


Скачать работу 'Коллоквиум Пищеварение':


76. Пищеварение и его значение…
Пищеварением называется комплекс физиологических процессов, благодаря которым пища
1) поступает в желудочно-кишечный тракт,
2) передвигается по нему,
3) подвергается физическим и химическим изменениям, расщепляется до простых продуктов, лишается видовой специфичности и
4) всасывается во внутреннюю среду.

Значение пищеварения для организма :
1. Энергетическое (источник энергии).
2. Пластическое (расщепление до простых составных частей, лишенных видовой специфичности - использование для обновления структур организма).
3. Обеспечение индивидуальности внутренней среды организма. Лишение веществ специфичности в процессе пищеварения.
Основные функции пищеварительного тракта :
1. Секреторная - обеспечивает хим. расщепление пищи (способность желез пищеварительного тракта выделять соки, содержащие ферменты).
2. Моторная - представлена 2-мя этапами:
а) Физическая обработка пищи (размельчение, растирание в ротовой полости);
б) Перемещение пищи по всей длине пищеварительного тракта.
Связь моторной и секреторной функциями - размельчение пищи делает ее доступной для действия пищеварительных соков; перемещение пищи обеспечивает последовательное действие соков различных отделов ЖКТ. /пищеварительный конвейер/
Цель секреции и моторики -
А) Расщепить пищу до веществ не обладающих видовой и индивидуальной специфичностью.
Б) Обеспечить транспорт этих веществ к месту всасывания.
3. Всасывание - процесс перехода веществ, лишенных видовой специфичности, во внутреннюю среду организма (диатезы у детей - за счет большей проницаемости стенки ЖКТ всасываются и вещества, обладающие остаточной видовой специфичностью, отсюда аллергизация организма).
4. Экскреция - процесс выделения из внутренней среды в пищеварительный тракт метаболитов, не нужных организму или даже вредных.
Помимо основных существуют и дополнительные функции ЖКТ:
5. Инкреторная - выработка специальными клетками ЖКТ и pancreas т.н. интестинальных гормонов, влияющих на пищеварение.
6. Защитная - барьерная функция ЖКТ (бактерицидное, бактериостатическое и дезинтоксикационное действие).
7. Рецепторная - хемо- и механорецепторные поля ЖКТ может быть общими для рефлекторных дуг висцеральных систем и сомататических. рефлексов. Вкусовой анализатор.
8. Гемопоэтическая –
А) в железах желудка вырабатывается гастромукопротеид (внутренний фактор Кастла), необходимый для всасывания цианкобаламина (вит. В12), обеспечивающего нормальное созревание и деление эритробластов (при резекции желудка или поражении слизистой - анемия).
Б). Слизистая оболочка желудка и тонкой кишки, печень (наряду с костным мозгом и селезенкой) - депо ферритина (белка. соединение Fe, участвующего в синтезе Нв).

Методы исследования пищеварительного тракта :
XVIII век - начало формирования научных методов исследования пищеварительного тракта и его функций.
Все методы подразделяются на:
1. Острые 2. Хронические
1. Острые методы :
Характерная особенность острых экспериментов (результат - быстро (+), как правило - однократно, условия далеки от физиологических (-)).
а) вивисекционный метод (прижизненное вскрытие );
б) метод изоляции органов или участков органов (перфузия питатательными растворами - чувствительность к БАВ);
в) методы канюлирования выводных протоков пищеварительных желез.
2. Хронические методы исследования разработаны И.П. Павловым (Нобелевскую премию - за исследования в области пищеварения). В его лаборатории выполнялись операции, которые делали органы пищеварения доступными для длительного наблюдения.
Особенности хронических методов (проводятся, когда животное выздоравливает после операции, в условиях, приближенных к естественным; результат - многократно и в течение длительного отрезка времени(+)).
Методы изучения секреторной функции пищеварительного тракта в эксперименте:
1. Метод хронических фистул (искусственно созданное сообщение между полостью органа и внешней средой).
2. Методы изоляции органов или участков органов.3. Комбинированные методы изучения секреторной функции

Методы изучения секреторной функции у человека :
1. Зондирование тонким и толстым зондом (исследование содержимого желудка и 12-типерстной кишки).2. Радиотелеметрический метод (датчик определяет рН и активность ферментов).

Методы изучения моторной функции в эксперименте
1. Острые вивисекционные.
2. Методы выведения участков желудочно-кишечного тракта под кожу.
3. Баллоно-кимографический метод (через фистулу - баллон; сейчас - тензодатчики - более тонкая регистрация изменения давления).

Изучение моторики у человека:
1. Рентгенографический метод (рентгеноконтрастные вещества - состояние слизистой, контуры стенок, моторика, эвакуация).
2. электрогастрография.
(ЭГГ)
3. Фиброгастроскопия (оценка состояния слизистой, моторика, биопсия с гистологическим исследованием).

Методы изучения всасывания в эксперименте :
Метод Гейденгайна (всасывание на изолированном участке кишечника).
Ангиостомия (по И.П.П.) - исследование притекающей и оттекающей крови в момент пищевой нагрузки.
Методы изучения всасывания у человека.
1. По скорости возникновения фармакологического эффекта (никотиновая кислота - покраснение кожи лица).
2. Радиоизотопный метод (меченые вещества переходят из кишечника в кровь).

Изучение экскреторной функции пищеварительного тракта.
Экскреторную функцию изучают по количеству какого-либо вещества в содержимом различных отделов желудочно-кишечного тракта через определенные интервалы времени после введения этого вещества в кровь.
Типы пищеварения (от происхождения гидролиз) :
1. Аутолитическое - за счет ферментов, находящихся в пищевых продуктах растительного и животного происхождения.
2. Симбионтное - ферменты вырабатываются бактериями и простейшими данного макроорганизма;
3. Собственное - за счет ферментов, синтезируемых пищеварительным трактом:
а) Внутриклеточное - наиболее древний тип (не клетки выделяют ферменты, а вещество попадает внутрь клетки и там расщепляется ферментами).
б) Внеклеточное (дистантное, полостное) - ферменты выделяются в просвет ЖКТ, действуя на расстоянии;
в) Мембранное (пристеночное, контактное) - в слизистом слое и зоне щеточной каймы энтероцитов адсорбированы ферменты (значительно выше скорость гидролиза).
77. Виды моторики пищеварительного тракта…
Моторная функция обеспечивает размельчение, растирание, перемешивание пищевого комка, передвижение пищевых масс по пищеварительному тракту и выведение экскрементов.
Процесс жевания обеспечивается поперечнополосатой мускулатурой, перемешивание и перемещение пищевого комка - гладкой мускулатурой.
Разновидности моторной функции пищеварительного тракта:
Произвольная моторика (акт жевания, дефекации).
Непроизвольные рефлекторные моторные механизмы (механизмы открытия пилорического и илеоцекального сфинктеров, сфинктера Одди).
Автоматия отдельных отделов пищеварительного тракта.
Различают несколько видов таких сокращений: тонус, перистальтика, ритмическая сегментация, маятникообразные движения.
Физиологические свойства и особенности гладкой мускулатуры пищеварительной трубки
Гладкая мускулатура пищеварительной трубки состоит из гладкомышечных клеток (ГМК). Межклеточные контакты ГМК пищеварительной трубки обеспечивает наличие нексусов. Нексусы - один из типов межклеточных контактов.
ГМК пищеварительной трубки обладают рядом физиологических свойств: возбудимостью, проводимостью и сократимостью.
Особенности возбудимости ГМК пищеварительной трубки:
Возбудимость ГМК пищеварительной трубки ниже, чем у миоцитов поперечно-полосатой мускулатуры (ППМ).
ГМК пищеварительной трубки обладают спонтанной электрической активностью.
Спонтанная электрическая активность (СЭА) ГМК пищеварительной трубки имеет ритмический характер. Спонтанная ритмическая активность ГМК пищеварительной трубки связана с периодической активацией кальциевых каналов ГМК, которая формирует входящий ток ионов Са2+. Это вызывает спонтанное смещение потенциала мембраны от ПП до КУД и формирование ПД. Обычно формируется несколько «пачек» ПД. Различные виды автоматии пищеварительной трубки формируются за счет различных видов СЭА ГМК. СЭА ГМК возникает за счет активации различных типов кальциевых каналов.
Особенности проводимости ГМК пищеварительной трубки:
небольшая скорость проведения возбуждения;
проведение возбуждения через нексусы;
распространение возбуждения на соседние ГМК без декремента (ослабления);
полный охват возбуждением всех элементов гладкомышечной структуры.
Особенности сократимости ГМК пищеварительной трубки. Особенности сократимости ГМК пищеварительной трубки обусловлены особенностью сократительного аппарата ГМК.
Особенности сократительного аппарата ГМК.
Стабильные актиновые нити крепятся к плотным тельцам, которые являются аналогами Z линий в ППМ и располагаются и в цитоплазме, и на внутренней поверхности цито-плазматической мембраны.
Стабильные толстые миозиновые нити отсутствуют.
Сборка толстых миозиновых нитей происходит только в развитии процесса сокращения.
Сборка толстых миозиновых нитей значительно увеличивает время развития сокращения.
Инициируют сборку толстых миозиновых нитей ионы Са2+.
Тропонин С в ГМК отсутствует.
Роль тропонина С в ГМК выполняет кальмодулин.
Выход ионов кальция в цитоплазму из саркоплазматического ретикулума (СПР) осуществляется через кальциевые каналы, активация кальциевых каналов ГМК осуществляетсяИФ3, который активирует рецепторы к ИФ3 в мембране СПР, ассоциированные с кальциевыми каналами.
Ионы Са2+ инициируют сокращение ГМК, взаимодействуя кальмодулином.
Кальмодулин фосфорилирует киназы ответственные за фос-форилирование легких нитей актина и тяжелых нитей миозина.
Фосфорилирование легких нитей актина и тяжелых нитей миозина, ионы Са2+ активирует их взаимодействие, скольжение их относительно друг друга и, как следствие, укорочение и/или увеличение напряжения ГМК.
При расслаблении тяжелые миозиновые нити разбираются.
При вызванном сокращении или расслаблении ГМК в каскаде активации могут принимать участие протеинкиназы А, С, G. ГМК собраны в пучки. Пучки ГМК формируют слои гладкой мускулатуру пищеварительной трубки:
продольный слой гладкой мускулатуры пищеварительной трубки;
поперечный (косой) слой гладкой мускулатуры пищеварительной трубки;
циркулярный слой гладкой мускулатуры пищеварительной трубки.
Наличие таких слоев гладкой мускулатуры обеспечивает необходимый спектр моторной активности пищеварительной трубки.
Виды моторики пищеварительной трубки
1.Тонус гладкой мускулатуры пищеварительной трубки.
Выделяют:
базальный тонус всех гладких мышц пищеварительной трубки;
тонические волны, приводящие в соответствие объем химуса и определенного отдела пищеварительной трубки;
тоническое сокращение сфинктеров.
2.Перистальтика гладкой мускулатуры пищеварительной трубки.
Перистальтика обеспечивается сократительной активностью продольного и циркулярного мышечных слоев пищеварительной трубки. Обеспечивает перемешивание пищевого комка и перемещение его по длине пищеварительной трубки. Перистальтическая волна возникает с частотой 3-5 раз в минуту. Направление перистальтики от начала любой части пищеварительной трубки к ее окончанию. Волнообразное сокращение гладкой мускулатуры пищеварительной трубки. Впереди пищевого комка идет волна расслабления (циркулярная мышца расслаблена, продольная сокращена), позади волна сокращения (циркулярная мышца сокращена, продольная расслаблена). В основе лежит спонтанная ритмическая активность ГМК пищеварительной трубки, обусловленная спонтанной активацией кальциевых каналов L-типа.
3.Ритмическая сегментация гладкой мускулатуры пищеварительной трубки.
Ритмическая сегментация обеспечивается продольным и поперечным (косым) слоями гладкой мускулатуры пищеварительной трубки. Это «стоячие волны» сокращения продольного и поперечного слоев гладкой мускулатуры, возникающие в определенных отделах пищеварительной трубки с частотой 15-18 раз в минуту. Обеспечивают перемешивание химуса и функциональное отделение (временную частичную изоляцию) определенной части пищеварительной трубки.
4.Маятникообразные движения гладкой мускулатуры пищеварительной трубки.
Маятникообразные движения возникают с частотой 10 раз в минуту. Они обеспечиваются своеобразными сокращениями продольного слоя мускулатуры, в которых последовательно чередуются сокращения и расслабления гладкой мускулатуры. За счет маятникообразных движений в пищеварительной трубке происходит эффективное перемешивание химуса.
5.Антиперистальтика гладкой мускулатуры пищеварительной трубки.
Антиперистальтика в норме характерна только для моторной активности толстого кишечника. В других отделах пищеварительного тракта возникает только при патологических состояниях, когда необходимо срочное опорожнение пищеварительной трубки.
6.Закрытие и открытие сфинктеров пищеварительной трубки.
В пищеварительной трубке насчитывается 35 сфинктеров. Они выполняют функции частичной или полной изоляции друг от друга различных частей пищеварительной трубки и открытие их при необходимости для естественной эвакуации пищевого комка из выше лежащих в ниже лежащие отделы пищеварительной трубки на различных этапах конвейерной обработки пищи. Полностью изолирующие сфинктеры в закрытом состоянии полностью предотвращают заброс химуса из ниже лежащих в выше лежащие отделы пищеварительной трубки, частично изолирующие сфинктеры не обеспечивают полной изоляции одного отдела пищеварительной трубки и поэтому не исключают частичное перемещение пищи по естественному направлению ее движения (в ниже лежащий отдел) и обратный заброс порции химуса в вышележащий отдел пищеварительной трубки.
Гладкие мышцы пищеварительного тракта относятся к группе унитарных и обладают способностью спонтанного ритмического возбуждения и свойствами синцития. Растяжение гладких мышц вызывает деполяризацию их мембран и мышечное сокращение. Вегетативные нервы, гормоны и парагормоны изменяют частоту и силу этих сокращений в широких пределах. На протяжении пищеварительного тракта имеется несколько водителей ритма его сокращений. Эти водители ритма особенно чувствительны к физиологически активным веществам и получают обильную иннервацию.
Сложность движений пищеварительного тракта обеспечивается наличием в нем слоев и пучков гладких мышц, идущих в разных направлениях, при расслаблении или сокращении которых уменьшается или увеличивается тонус кишки и изменяется просвет пищеварительного канала. Волна сокращений и расслабления круговых мышц продвигается вдоль пищеварительного канала, создавая его перистальтические сокращения. Согласование сокращений различных мышечных пучков осуществляется посредством периферической интрамуральной нервной системы.
В координации моторики пищеварительного тракта велика роль миогенных механизмов, периферической (интра- и экстрамуральной) и центральной нервной системы. Последняя имеет важное значение в пусковых влияниях на органы пищеварения, в изменении их реактивности, интеграции моторной и секреторной функций пищеварительного тракта, его адаптации к виду принятой пищи.
Парасимпатические влияния преимущественно повышают моторную активность пищеварительного тракта, но в составе блуждающих нервов имеются возбуждающие и тормозящие моторику нервные волокна. Симпатические влияния заключаются в основном в снижении моторной активности. Нервные, гормональные и парагормональные влияния создают сочетанные органные и межорганные внутрисистемные эффекты. Так, желчевыделение осуществляется сокращениями желчного пузыря при открытом сфинктере печеночно-поджелудочной ампулы (сфинктер Одди); желудочная эвакуация — при сокращении антральной части желудка, но расслабленном сфинктере привратника (пилорический сфинктер).
78. Пищеварение в полости рта…
Секреция в ротовой полости
В ротовой полости слюну вырабатывают 3 пары крупных и множество мелких слюнных желез. Подъязычная и мелкие железы выделяют секрет постоянно. Околоушная и подчелюстная - при стимуляции.
1) Время нахождения пищи в ротовой полости в среднем - 16-18 секунд.
2) Объем суточной секреции - 0,5-2 литра. Пищеварение полостное
3) Скорость секреции - от 0,25 мл/мин. до 200 мл/мин.
4) рН - 5,25-8,0. Оптимальная среда для действия ферментов - слабо щелочная.
Состав слюны:
А). Вода - 99,5%.
Б). Ионы К, Na, Ca, Mg, Fe, Cl, F, PO4, SO4, CO3.
В). Белки (альбумины, глобулины, свободные аминокислоты), азотсодержащие соединения небелковой природы (аммиак, мочевина, креатинин). Их содержание увеличивается при почечной недостаточности.
Г). Специфические вещества:
- муцин (мукополисахарид), придает слюне вязкость, формирует пищевой комок.
- лизоцим (муромидаза) вещество, обеспечивающее бактерицидным действием (собаки зализывают рану),
- нуклеаза слюны - антивирусное действие,
- иммуноглобулин А - связывает экзотоксины.
Д) активные лейкоциты - фагоцитоз (в см3 слюны - 4000 шт.).
Е) нормальная микрофлора ротовой полости, которая угнетает патологическую.
Ж). Ферменты слюны. Относятся к карбогидразам :
1. Альфа-амилаза - расщепляет крахмал на дисахариды.
2. Альфа-глюкозидаза - на сахарозу и мальтозу - расщепляют до моносахаров (активны в слабощелочной среде).
В пределах ротовой полости ферменты слюны практически не оказывают влияния (из-за незначительного времени нахождения пищевого комка в ротовой полости). Основной эффект - в пищеводе и желудке (пока кислое содержимое не пропитает пищевой комок).

Функции слюны:
смачивание пищевых частиц;
обволакивание пищевых частиц слизью;
склеивание слизью пищевых частиц в пищевой комок;
растворение веществ, которые обеспечивают вкусовую рецепцию;
ферментативный гидролиз пищи.
Регуляция слюноотделения
Условно-рефлекторная регуляция - слюноотделение начинается на вид пищи, запах, обстановку и время приема пищи.
Безусловно-рефлекторная - регуляция слюноотделения осуществляется за счет раздражения рецепторов ротовой полости.
Гуморальной регуляции слюноотделения нет.
Слюнные железы имеют двойную эфферентную иннервацию. Активация симпатического отдела вызывает выделение небольшого количества вязкой густой слюны с высоким содержанием ферментов и муцина. Активация парасимпатического отдела вызывает обильное выделение жидкой слюны с невысоким содержанием ферментов и муцина, кроме того, активация парасимпатического отдела вызывает расширение мелких кровеносных сосудов, обеспечивающих кровоснабжение слюнных желез, что приводит к усилению кровотока в железах.
Гиперкапния стимулирует активность центра слюноотделения. Сильные болевые раздражения с любой рефлексогенной зоны оказывают на него (центр слюноотделения) тормозящее влияние.
79. Пищеварении в желудке…
Секреция в желудке
Время нахождения пищи в желудке - 3-10 часов. Натощак в желудке находит ся около 50 мл содержимого (слюна, желудочный секрет и содержимое 12-перстной кишки) нейтральной рН (6,0).Объем суточной секреции - 1,5 - 2,0 л/сутки, рН - 0,8-1,5.
Железы желудка состоят из трех видов клеток: Главные клетки – вырабатывают ферменты; Париетальные (обкладочные) - НCl; Добавочные - слизь.
Клеточный состав желез изменяется в различных отделах желудка (в антральном - нет главных клеток, в пилорическом - нет обкладочных).
Пищеварение в желудке преимущественно полостное.
Состав желудочного сока
1. Вода - 99 - 99,5%. 2. Специфические вещества: Основной неорганический компонент - HCl (м.б. в свободном состоянии и связанная с белками). Роль HCl в пищеварении:1. Стимулирует секрецию желез желудка.2. Активирует превращение пепсиногена в пепсин.3. Создает оптимальную рН для ферментов. 4. Вызывает денатурацию и набухание белков (легче расщепляются ферментами). 5. Обеспечивает антибактериальное действие желудочного сока, а следовательно, и консервирующий эффект пищи (нет процессов гниения и брожения). 6. Стимулирует моторику желудка.7. Участвует в створаживании молока.8. Стимулирует выработку гастрина и секретина (интестинальные гормоны).9. Стимулирует секрецию энтерокиназы стенкой 12-перстной кишки.
3. Органические специфические вещества:1. Муцин - предохраняет желудок от самопереваривания. Формы муцина (выделяется в 2-х формах):
а) прочно связанная с клеткой, предохраняет слизистую от самопереваривания;
б) непрочно связанная, покрывает пищевой комок.2. Гастромукопротеид (внутренний фактор Кастла) - необходим для всасывания витамина В12.
3. Мочевина, мочевая кислота, молочная кислота.4. Антиферменты.
Ферменты желудочного сока:
1)В основном - протеазы, обеспечивают начальный гидролиз белков (до пептидов и небольшого количества аминокислот). Общее название - пепсины.
Вырабатываются в неактивной форме (в виде пепсиногенов). Активация происходит в просвете желудка с помощью HCl, которая отщепляет ингибирующий белковый комплекс. Последующая активация идет аутокаталитически (пепсином). Поэтому больные анацидным гастритом вынуждены до приема пищи принимать раствор HCl для запуска пищеварения. Пепсины расщепляют связи, образованные фенилаланином, тирозином, триптофаном и рядом других аминокислот.
Пепсины:
1. Пепсин А - (оптимум рН - 1,5-2,0) расщепляет крупные белки на пептиды. Не вырабатывается в антральной части желудка. 2. Пепсин В (желатиназа)- расщепляет белок соединительной ткани - желатин (активен при рН меньше 5,0). 3. Пепсин С (гастриксин) - фермент, расщепляющий животные жиры, особенно гемоглобин (оптимум рН - 3,0-3,5). 4. Пепсин D (реннин) - створаживает казеин молока. В основном - у КРС, особенно много у телят - используется при изготовлении сыра (поэтому сыр на 99% усваивается организмом) У человека -химозин (вместе с соляной кислотой (створаживает молоко)). У детей - фетальный пепсин (оптимум рН -3,5), в 1,5 раза активнее створаживает казеин, чем у взрослых. Створоженные белки молока легче подвергаются дальнейшему перевариванию.
2)Липаза. В желудочном соке содержится липаза, активность которой невелика, она действует только на эмульгированные жиры (например, молока, рыбьего жира). Расщепляются жиры на глицерин и ВЖК при рН 6-8 (в нейтральной среде). У детей желудочная липаза расщепляет до 60% жиров молока.
3)Углеводы в желудке расщепляются за счет ферментов слюны (до их инактивации в кислой среде). Собственных карбогидраз желудочный сок не содержит.
Моторная функция желудка
В состоянии покоя через каждые 45-90 минут покоя наблюдаются периодические сокращения - по 20-50 минут (тощаковая периодическая деятельность). Во время приема пищи и спустя некоторое время - стенка расслаблена (\"рецептивное расслабление\").
В желудке есть кардиальный водитель ритма, откуда и идут перистальтические волны (скорость- 1 см/с, время - 1,5 с, волна охватывает - 1-2 см желудочной стенки).
В моторике желудка выделяют в основном 4 вида:1. Тонус. 2. Перистальтика. 3. Ритмическая сегментация . 4. Маятникообразные движения
1. Тонус - благодаря тонусу желудок охватывает пищевой комок, каким бы маленьким он не был (за счет раздражения механорецепторов желудка).
2. Перистальтика - за счет сокращения продольной и циркулярной мускулатуры желудка пища передвигается из области кардии к пилёрусу.
3. Ритмическая сегментация - сокращение циркулярной мускулатуры делит содержимое желудка на 3-4 сегмента. В каждом из них пищеварение идет во многом обособленно.
4. Маятникообразные движения - осуществляются в пределах сегмента за счет сокращения продольных и косых мышц желудка (участвуют в перемешивании пищи).
Благодаря сочетанию сокращений различных мышц желудка осуществляется перемешивание содержимого желудка и передвижение пищи.
Механизм перехода пищи из желудка в 12-перстную кишку
Для открытия пилорического сфинктера необходимы следующие условия:
раздражение механорецепторов перед сфинктером; отсутствие раздражения механорецепторов за сфинктером (основная причина); щелочная среда за сфинктером. При изменении этих условий (поступление порции кислого содержимого из желудка) сфинктер закрывается.
Регуляция желудочной секреции
Фазы желудочной секреции:
1. Сложнорефлекторная фаза - состоит из двух компонентов:а) условно-рефлекторная заключается в секреции желудочного сока на вид пищи, запах, обстановку и время приема пищи. Такой вид сока Павлов назвал \"аппетитным\".б) безусловно-рефлекторная - отделение желудочного сока в результате раздражения рецепторов полости рта.2. Нейрогуморальная фаза - является ответом на механическое раздражение рецепторов желудка пищей, а также на действие гуморальных веществ.3. Кишечная фаза - желудочного сокоотделения реализуется при участии гуморальных стимуляторов, вырабатываемых слизистой оболочкой тонкой кишки.
К экзогенным активаторам желудочной секреции относятся:
- пептоны, горчица, уксус, алкоголь. Жиры тормозят функцию желудка. К эндогенным гуморальным регуляторам желудочной секреции относятся:
1. Гистамин - стимулирует отделение соляной кислоты (в основоном) и пепсинов.2. Гастрин - поступает в кровь и стимулирует секрецию желудочного сока.3. Мотилин - активирует моторную функцию желудка.4. Гастрон и бульбогастрон - тормозят функцию желудка.
Электрогастрография
Электрогастрография является методом выбора оценки деятельности желудка по его биоэлектрической активности.
Безусловно, интегративная регистрация биопотенциалов гладкой мускулатуры желудка косвенно свидетельствует о моторной деятельности желудка.
Рентгеноскопия и рентгенография желудка позволяют определить форму, величину, положение, подвижность желудка, обнаружить локализацию язвы, опухоли желудка. Помимо этого, рентгенологический метод позволяет определить рельеф слизистой оболочки желудка и его функциональное состояние. Исследование проводится натощак. Для исследования желудка применяют жидкую водную взвесь сульфата бария (100-150 г на стакан воды).
Гастроскопия (фиброгастроскопия) - осмотр желудка при помощи фиброгастроскопа - это мягкий гастроскоп, в котором передача изображения осуществляется через пучки стеклянных волокон толщиной с волос. Также в гастроскопии имеется приспособление для визуальной биопсии, а также для фотографирования и видеосъемки слизистой оболочки желудка.
Этот метод исследования позволяет выявить состояние слизистой оболочки желудка - цвет, мельчайшие изменения поверхности - разрастания, эрозии, язвы. Гастроскопия дает представление и о состоянии сосудов, кровоизлияниях, отделении слизи. С помощью этого метода можно детально изучить рельеф, т. с. характер, высоту, ширину и плотность складок слизистой оболочки желудка, что является ценным дополнением к рентгенологическому исследованию. Путем гастроскопии можно выявить нераспознанные при рентгенологическом исследовании опухоли, язвы, кровоточащие полипы желудка.
80. Пищеварение в 12-перстной кишке…
В просвет 12-ти перстной кишки поступает -
1. Кишечный сок,
2. Сок pancreas.
Кроме того, через общий желчный проток –
3. Желчь.
Сок поджелудочной железы
Железа смешанной секреции. Сок выделяет в 12-перстную кишку. Пищеварение в 12-перстной кишке преимущественно полостное. За сутки - 1,5-2,5 л панкреатического сока, рН - 7,5-8,8. Из солей - высокое содержание бикарбоната - обеспечивают нейтрализацию кислого желудочного содержимого.
Специфические вещества поджелудочного сока:
1. Панкреатический калликреин - близок по свойствам к плазменному, высвобождает каллидин, идентичный брадикинину, т.е. активируется моторика, расширяются сосуды тонкого кишечника. 2. Ингибитор трипсина - блокирует активацию трипсина внутри железы.
Ферменты панкреатического сока.
Панкреатический сок содержит все группы ферментов, воздействующих на белки, жиры, углеводы и нуклеиновые кислоты, т.е. уже в 12-п.к. идет глубокое расщепление пищи.
Пищеварительные ферменты поджелудочного сока
Протеазы поджелудочного сока (эндо- и экзопептидазы):
а) Эндопептидазы - действуют на молекулу изнутри, расщепляя внутренние пептидные связи.
1. Трипсин - расщепляет связи между аргинином и лизином.
Вырабатывается в виде неактивного трипсиногена, который активируется ферментом кишечного сока - энтерокиназой. В последующем активация трипсиногена и остальных протеаз поджелудочного сока с - за счет трипсина.
2. Химотрипсин - расщепляет связи тирозина, триптофана, фенилаланина. Вырабатывается в неактивной форме и в кишечнике активируется трипсином.
3. Панкреопептидаза Е (эластаза) - расщепляет эластические белки.
б) Экзопептидазы расщепляют конечные связи, освобождая аминокислоты одну за другой.
1. Карбоксипептидаза -отщепляет аминокислоты с \"С\"-конца пептида (СООН).
2. Аминопептидаза - отщепляет аминокислоты с \"N\"-конца пептида (NH3).
Т.о. уже в 12-п.к. происходит расщепление большого количества белка до аминокислот.
Липазы поджелудочного сока:
Липаза поджелудочной железы является основной липазой желудочно-кишечного тракта.
1. вырабатывается в неактивном состоянии,
2.активируется желчью (желчными кислотами); 3.действует на эмульгированные жиры, расщепляя их до глицерина и высших жирных кислот.
В отличие от желудка, где нет эмульгаторов, здесь есть желчь, которая хорошо эмульгирует жиры, т.е. 12-п.к. - основное место расщепления жиров.
Фосфолипаза А расщепляет фосфолипиды до жирных кислот.
Карбогидразы поджелудочного сока
1. Альфа-амилаза - расщепляет гликоген и крахмал до дисахаридов.
2. Альфа -глюкозидаза - расщепляет дисахариды до моносахаридов, то есть продолжается процесс, начатый в ротовой полости.
Нуклеазы (класс фосфодиэстераз):
1. Рибонуклеаза.
2. Дезоксирибонуклеаза.
Регуляция секреции поджелудочной железы
Условные рефлексы на отделение поджелудочного сока вырабатываются с трудом и не играют существенного значения для регуляции секреции поджелудочной железы. Безусловно-рефлекторное отделение поджелудочного сока происходит при раздражении рецепторов 12-ти-перстной кишки, а также при раздражении рецепторов желудка и редко - ротовой полости.
Экзогенными стимуляторами отделения сока поджелудочной железы являются жиры.
К эндогенным регуляторам секреции сока поджелудочной железы относятся:
1. Секретин - стимулирует выделение поджелудочного сока.
2. Хемоденин - стимулирует выработку ферментов, прежде всего химотрипсиногена.
3. Холецистокинин - стимулирует секрецию поджелудочной железы и сокращения желчного пузыря.
81. Роль печени в пищеварении…
Желчь
Представляет собой сочетание секрета и экскрета. Объем суточной секреции - 0,5-1 л. рН - 7,8-8,6. Состав желчи:
1. Желчь не содержит ферментов.
2. Специфические вещества: желчные кислоты и желчные пигменты: билирубин - основной пигмент у человека, придает коричневую окраску; биливердин - в основном в желчи травоядных животных (зеленый цвет).
Роль желчи в пищеварении:
1. Участвует в смене желудочного пищеварения на кишечное (инактивация пепсина и кислого содержимого).
2. Создает оптимальную рН для ферментов pancreas, особенно - липаз.
3. Регулирует работу пилорического сфинктера (за счет щелочной рН).
4. Стимулирует моторику тонкого кишечника и деятельность кишечных ворсинок, что увеличивает скорость адсорбции веществ.
5. Участвует в пристеночном пищеварении, создавая благоприятные условия для фиксации ферментов на поверхности кишки.
6. Стимулирует секрецию pancreas.
7. Стимулирует желчеобразовательную функцию печени (положительная обратная связь).
8. Предупреждает развитие гнилостных процессов (бактериостатическое действие на кишечную микрофлору).
9.Желчные кислоты, как компонент желчи, играют в пищеварении ведущую роль: эмульгируют жиры, активируют поджелудочную липазу, обеспечивают всасывание нерастворимых в воде веществ, образуя с ними комплексы (жирные кислоты, холестерин, жирорастворимые витамины (А, D, Е, К) и соли Са+2), способствуют ресинтезу триглицеридов в энтероцитах.
Моторная функция желчных путей
Желчь постоянно вырабатывается печенью, но поступает в 12-перстную кишку периодически, т.к. может накапливаться в желчном пузыре.
Желчным путям присущи перистальтические движения и тонические сокращения. Между моторикой желчных путей и сфинктером Одди существуют следующие функциональные взаимоотношения: повышение тонуса сфинктера Одди сопровождается уменьшением тонуса желчного пузыря и исчезновением перистальтики желчных путей. Все это приводит к тому, что вырабатываемая желчь накапливается в желчном пузыре и за счет всасывания воды стенкой сгущается.
При раздражении рецепторов 12-перстной кишки поступившей туда пищей происходит рефлекторное открытие сфинктера Одди. Одновременно сокращается желчный пузырь и активируется перистальтика желчных путей. Все это приводит к выделению желчи в 12-перстную кишку.
Регуляция желчеотделения
Условно-рефлекторная регуляция выражена слабо.
Безусловные рефлексы отделения желчи наблюдаются при раздражении рецепторов 12-ти перстной кишки, желудка, а иногда и ротовой полости.
Реализация рефлекторного активирующего влияния реализуется через блуждающие нервы; блуждающие нервы увеличивают сократительную активность гладкой мускулатуры желчного пузыря и желчных протоков, вызывают расслабление сфинктера Одди.
Активация симпатических структур тормозит отделение желчи
Мощнымы экзогенными стимуляторами моторики желчного пузыря и желчевыводящих путей являются жиры мяса и молока, яичные желтки.
Эндогенные регуляторы желчеотделения
Стимулируют:
- холецистокинин
- гастрин
- секретин
- бомбезин

Тормозят:
- относящийся к кальцитониновому гену пептид
- антихолецистокинин
- глюкагон
- вазоинтестинальный пептид (ВИП)
Регуляция желчеобразования
Условно-рефлекторная регуляция выражена слабо.
Безусловные рефлексы образования желчи наблюдаются при раздражении рецепторов 12-ти перстной кишки, желудка, а иногда и ротовой полости.
Реализация рефлекторного, активирующего влияния реализуется через блуждающие нервы.
Активация симпатических структур тормозит образование желчи.
Стимулируют образование желчи:
Эндогенные стимуляторы:
- секретин
- желчные кислоты
- холецистокинин
- гастрин
- глюкогон
Экзогенные стимуляторы:
- яичные желтки, жиры мяса и молока.
82. Состав и свойства кишечного сока…
Сок тонкой кишки
Объем суточной секреции - 2,5 л. рН - 7,2-7,5. Пищеварение преимущественно пристеночное.
1) Специфическими веществами кишечного сока являются щелочные продукты.
2) Ферменты, содержащиеся в кишечном соке, действуют на уже частично переваренные вещества. Всего - более 20 ферментов. Наиболее значимые:
Протеазы кишечного сока:
1. Энтерокиназа - фермент, активирующий трипсиноген.
2. Три- и дипептидазы (эрипсины)- расщепляют пептиды на аминокислоты.
Липазы содержатся в кишечном соке в незначительном количестве (липаза, фосфолипаза).
Карбогидразы кишечного сока:
Альфа-глюкозидаза расщепляет сахарозу до моносахаридов.
Бета-галактозидаза - расщепляет молочный сахар до глюкозы и галактозы.
Сахараза,
Лактаза,
Мальтаза
Изомальтаза
Гамма-амилаза (фиксирована к стенке кишки).
Нуклеазы
РНКаза
ДНКаза
Нуклетидаза. Вызывает дефосфорилирование мононуклетидов.
Фосфатазы
Щелочная фосфатаза
Кислая фосфатаза
Сок толстой кишки
рН сока - 8,5-9,0.
К специфическим веществам сока толстой кишки относится слизь, которая обеспечивает формирование каловых масс.
Собственных ферментов сок толстой кишки не содержит.
Состав сока толстой кишки определяется не только ее железами, но и микрофлорой.
1. Нормальная микрофлора кишечника предохраняет организм хозяина от внедрения и размножения патогенных микроорганизмов (предотвращает процессы гниения (белки) и брожения (углеводы)).
2. Микрофлора участвует в разложении компонентов пищеварительных секретов (ферментов, желчных кислот).
3. Способна синтезировать витамины К и некоторые витамины группы В.
Моторная функция толстой кишки
Все виды моторики в толстой кишке выражены значительно слабее, чем в тонкой. Для толстой кишки в норме характерна антиперистальтика. Благодаря антиперистальтике содержимое задерживается в кишке, что способствует более интенсивному всасыванию воды и формированию каловых масс.
Акт дефекации - произвольный акт, т.к. наружный анальный сфинктер представлен поперечно-полосатой мускулатурой.
Регуляция секреции в тонком кишечнике
Нервная регуляция секреции в тонком кишечнике
Условно-рефлекторная регуляция отсутствует.
Нервная регуляция секреции кишечника осуществляется преимущественно локально, при местном раздражении рецепторов за счет местных рефлексов механическая стимуляция химусом стенки тонкого кишечника вызывает усиление секреции.
Влияние, реализуемое через блуждающие нервы.
Эфферентная импульсация блуждающих нервов не изменяет объем секрета и скорость его выделения, но вызывает повышение содержания ферментов в секрете.
Влияние, реализуемое через симпатические нервы.
Эфферентная симпатическая импульсация не изменяет объем секрета и скорость его выделения, но вызывает снижение содержания ферментов в секрете.


Гуморальная регуляция секреции в тонком кишечнике
Экзогенным стимулятором сокоотделения в тонком кишечнике является желчь.
К эндогенным стимуляторам сокоотделения в тонком кишечнике относятся:
- энтерокинин;
- дуокренин;
- гастроингибирующий пептид (ГИП);
- мотилин;
- вазоинтестинальный пептид (ВИП);
- кортизол.
Тормозит сокоотделение в тонком кишечнике соматостатин.
Моторная функция тонкой кишки
Для тонкой кишки характерны: тонус, перистальтика, маятникообразные движения, ритмическая сегментация.
Кроме того, в тонкой кишке иногда возникает стремительная перистальтика. Этот вид моторики является защитной реакцией, которая включается при заболеваниях желудочно-кишечного тракта ( например, при отравлении).
Это может привести к инвагинации участка кишки и развитию острой непроходимости.
Нервная регуляция моторики в тонком кишечнике
Важную роль в регуляции моторики в тонком кишечнике играют местные и периферические рефлексы.
При локальном раздражении механорецепторов (реже хеморецепторов) активируются все виды моторики в ограниченном отрезке кишки. Таких участков с активной моторикой может быть несколько. В реализации местных и периферических рефлексов принимают участие эфферентные нейроны разных типов, выделяющие как возбуждающие, так и тормозные медиаторы.
Рефлекторно (так называемые центральные рефлексы) свое влияние на моторику тонкого кишечника оказывают парасимпатические и симпатические нервы. Вагусные влияния усиливают моторику тонкого кишечника, а симпатические влияния вызывают торможение моторики тонкой кишки.
В реальных естественных условиях важную роль в регуляции моторики тонкого кишечника играют возбуждающие рефлексы кишечника:
1. Пищеводно-кишечный рефлекс, возбуждающий моторику
тонкого кишечника.
2. Желудочно-кишечные моторные рефлексы:
- гастродуоденальный;
- гастроеюнальный;
- гастроилеоцекальный.
Эти рефлексы возникают при механическом раздражении желудка и усиливают моторику соответствующего отдела тонкого кишечника.
3. Кишечно-кишечный моторный рефлекс.
При механическом раздражении выше лежащего отдела кишечника усиливается моторика ниже лежащего отдела тонкого кишечника.
В реальных естественных условиях важную роль в регуляции моторики тонкого кишечника играют тормозящие рефлексы кишечника:
1. Рефлекторное расслабление верхних отделов кишечника
при приеме пищи.
2. Кишечно-кишечный тормозной рефлекс. Избыточное раздражение любой части кишечника приводит к расслаблению других частей кишечника.
3. Прямо-кишечно-кишечный рефлекс. Раздражение прямой кишки и ампулы экскрементом вызывает торможение моторной активности тонкой кишки.
Гуморальная регуляция моторики в тонком кишечнике
Эндогенные регуляторы моторики тонкой кишки
Стимулируют моторику тонкой кишки:
- мотилин;
- гастрин;
- холецистокинин;
- гистамин;
- серотонин;
- субстанция Р;
- кинины;
- вазопрессин;
- окситоцин;
- вилликинин - стимулирует сокращение ворсинок тонкой кишки.
Тормозят моторику тонкой кишки:
- секретин;
- гастроингибирующий пептид (ГИП);
- вазоинтестинальный пептид (ВИП).
Полостное (дистантное) пищеварение, ферменты выделяются секреторными клетками в просвет пищеварительного тракта, действуют на расстоянии от места выделения в полости пищеварительного тракта;
Мембранное (пристеночное, контактное) пищеварение. В слизистом слое, в зоне щеточной каймы энтероцитов адсорбированы ферменты, которые осуществляют конечный этап расщепления пищевых веществ.
Пристеночное (мембранное) пищеварение
Характеристика пристеночного (мембранного) пищеварения
На долю пристеночного пищеварения приходится до 70% от общего объема пищеварения в тонком кишечнике.
В тонком кишечнике объем пристеночного пищеварения, и объем полостного пищеварения относится как 2:1.
Пристеночное (мембранное) пищеварение совершается на пристеночном слое слизи, на поверхности ворсинок и микроворсинок, на гликокалексе (полимукосахаридных нитях, связанных с мембранами микроворсинок).
На этих структурах адсорбировано большое количество молекул более 20 различных ферментов (высокая плотность ферментов на единицу поверхности), катализирующих конечные этапы пищеварительного гидролиза белков, жиров и полисахаридов. Здесь находится полный набор ферментов, обеспечивающих расщепление три-, ди-мерных цепей до мономеров.
Плотное переплетение нитей гликокалекса образует своеобразный фильтр, величина ячеек которого препятствует прохождению микроорганизмов к месту расщепления субстратов. Это уменьшает конкуренцию между микро- и макроорганизмом за питательный субстрат и обеспечивает стерильность пристеночного пищеварения.
Ферменты, фиксированные на микроворсинке, ориентированы активными центрами в просвет кишечника, что обеспечивает, наряду с высокой плотностью ферментов, большую скорость гидролиза субстратов при пристеночном пищеварении. Пристеночное пищеварение пространственно сопряжено с всасыванием, что обеспечивает высокую эффективность пристеночного пищеварения.
83. Всасывание…
Всасывание - это совокупность физико-химических и физиологических процессов переноса веществ из просвета ЖКТ во внутреннюю среду организма (кровь, лимфу, тканевую жидкость). Всего реабсорбируется за сутки 8-9 л жидкости (около 1,5 л с пищей; остальное - пищеварительные соки).
Всасывание вдоль пищеварительного тракта
Всасывание начинается в ротовой полости, но небольшая поверхность слизистой оболочки, слабая способность к всасыванию и кратковременность нахождения пищи делают всасывание в ротовой полости мало значимым. Однако способность слизистой оболочки ротовой полости к всасыванию используется в медицине при применении лекарственных веществ, которые разрушаются в желудке. Всасываются - глюкоза, алкоголь, некоторые лекарственные вещества (валидол, нитроглицерин назначаются \"под язык\").
В желудке всасываются - вода, алкоголь, некоторые соли и моносахариды (в минимальных количествах), вещества, растворенные в спирте, всасываются в больших количествах.
Тонкий кишечник - основной отдел ЖКТ, где происходит интенсивное всасывание. Большая поверхность слизистой оболочки значительно увеличивается за счет ворсинок и микроворсинок. Слизистая тонкой кишки - имеет складки (увеличивают площадь в 3 раза), микроворсинки (увеличивают всасывательную поверхность в 600 раз). Сосудистой системы ворсинок имеет ряд особенностей: густую сеть капилляров под базальной мембраной, и большое количество крупных фенестр (окон) в эндотелии (45-70 нанометров), что позволяет всасываться крупным молекулам.
Всасываются: продукты гидролиза жиров, белков, углеводов, вода, минеральные соли, витамины. Скорость всасывания очень высокая - через 1-2 минуты появляются в крови, через 5-10 минут концентрация питательных веществ достигает максимума.
Толстая кишка является основным местом всасывания воды, а так же активный транспорт ионов натрия и хлора. Из химуса всасывается почти вся вода, около 5-7 литров, остается лишь около 100 мл.
Основные закономерности всасывания
1. В норме всасываются только низкомолекулярные вещества, лишенные видовой и индивидуальной специфичности.
2. Всасываются только водорастворимые вещества. Нерастворимые в воде жирные кислоты сначала образуют растворимые комплексы с желчными кислотами, после чего всасываются.
Механизмы всасывания
Выделяют 2 группы механизмов всасывания: активные и пассивные. Пассивные механизмы всасывания осуществляются за счет диффузии, осмоса, фильтрации.
Диффузия осуществляется за счет градиента концентрации. При этом растворенное вещество проникает из области большей концентрации в сторону меньшей концентрации. Фильтрация происходит при наличии разности гидростатических давлений и направлена в сторону меньшего давления. Осмос - это проникновение растворителя через полупроницаемые мембраны из области с меньшей концентрацией в область с большей его концентрацией.
Активные механизмы всасывания сопряжены со значительными энергозатратами (специфическое динамическое действие пищи). Идут в одну сторону, против градиента концентрации, могут идти по концентрационному градиенту с участием переносчиков (облегченная диффузия), необходимы специальные переносчики, большая скорость всасывания, наличие порога насыщения.
Всасывание воды происходит по законам осмоса (Н2О легко проходит из кишечника в кровь и обратно). При поступлении в кишечник гиперосмотического химуса Н2О идет из крови в кишечник для изоосмотичности среды кишечника. В результате наступает жажда, т.к. кровью теряется много воды. Затем всасываются вещества (соли, глюкоза, аминокислоты), что приводит к понижению осмотического давления химуса.
Одновалентные ионы всасываются легко и в больших количеств. Двухвалентные ионы - в меньшей степени.
Углеводы всасываются в виде моносахаридов (глюкоза, фруктоза, а в грудном возрасте - галактоза). Активный транспорт сопряжен с транспортом Nа.
Белки всасываются в виде аминокислот, ди- и трипептидов, по типу транспорта глюкозы (c Nа). Часть аминокислот - посредством специальных транспортных белков.
Жиры всасываются в виде моноглицеридов и жирных кислот в комплексе с желчными кислотами. После захвата мембранами энтероцитов комплексы распадаются и желчные кислоты вновь возвращаются в полость кишечника. В клетке осуществляется ресинтез триглицеридов в глобулы путем экзоцитоза - экскретируются в межклеточное пространство и оттуда поступает в лимфу в виде хиломикронов. В лимфу - 80-90% всех жиров. Затем - в кровь через грудной лимфатический проток в виде хиломикронов. Остальные 10-20% жирных кислот всасываются в портальную кровь.
84. Принципы регуляции деятельности пищеварительной системы…
Общие принципы регуляции пищеварения
1. Прием пищи \"запускает\" деятельность пищеварительных желез и моторику ЖКТ.
2. Состав пищи влияет на количество и качество пищеварительных соков.
3. Пищеварение определяется потребностями организма. Нервные и гуморальные механизмы обеспечивают пищевую потребность человека, которая выражается в аппетите.
Механизмы регуляции пищеварения: делятся на: нервные и гуморальные.
Нервная регуляция пищеварения
Нервная регуляция пищеварения осуществляется за счет безусловных и условных рефлексов.
Рефлекторная регуляция пищеварения имеет ряд особенностей:
1.в рефлекторной регуляции в качестве эфферентной системы выступают и вегетативная, и соматическая нервная система:
-соматическая нервная система регулирует процесс жевания, 1 и частично 2 фазы глотания, процесс опорожнения прямой кишки, за счет регуляции тонуса наружного анального сфинктера. В нервной регуляции пищеварения принимают участие двигательные ядра V, VII, IX, XII пары
черепно-мозговых нервов.
-вегетативная нервная система регулирует работу всего пищеварительного конвейера.
Важную роль в нервной регуляции пищеварения играет метасимпатическая нервная система, которую образуют нервные сплетения, находящиеся в подслизистой пищеварительного тракта. В состав метасимпатической нерной системы входят афферентные, эфферентные и вставочные нейроны. Такой набор нейронов позволяет метасимпатической нервной системе осуществлять локальную регуляцию. Метасимпатическая нервная система находится под контролем экстраорганной части вегетативной нервной системы.
2.Воздействие на рецепторы верхних отделов пищеварительного тракта вызывает включение в процесс пищеварения нескольких частей пищеварительного тракта, в каудальных от
делах пищеварительного тракта ответ на раздражение рецепторов локальный.
3.замыкание афферентной части на эфферентную происходит на разных уровнях нервной системы. На этой основе все пищевые рефлексы разделяют на:
-Центральные пищевые рефлексы. Это рефлексы в классическом понимании рецепторной теории. Их рефлексогенные зоны располагаются и в пищеварительном тракте
(для каждого рефлекса в определенной части пищеварительного тракта), и вне его. В центральной части рефлекторной дуги замыкание таких пищевых рефлексов происходит в таких структуры ЦНС, как гипоталамус, лимбическая система, базальные ядра и кора больших полушарий головного мозга.
-Периферические пищевые рефлексы. Реализуются без участия ЦНС. Рефлексогенные зоны таких рефлексов расположены в пределах пищеварительного тракта. Афференты замыкаются на уровне вегетативных ганглиев, в которых располагаются вторые нейроны вегетативной
(преимущественно парасимпатической) нервной системы, которые непосредственно иннервируют исполнительный орган пищеварительной системы.
-Местные рефлексы. Реализуются метасимпатической нервной системой без участия ЦНС и вегетативных ганглиев. Рефлекторная дуга состоит из двух нейронов с короткими аксонами (афферентного и эфферентного). Осуществляют локальную регуляцию функций пищеварительного тракта. Такие рефлексы играют ведущую роль в регу ляции в кишечнике.
4. Широкий спектр медиаторов и комедиаторов, используемый в передаче возбуждения в периферическом синапсе рефлекторных дуг (классические медиаторы, различные группы регуляторных пептидов, пурины и др.), участвующих в регуляции процесса пищеварения.
Гуморальные механизмы регуляции пищеварения
Гуморальные механизмы (реализуются без участия ЦНС) регуляции пищеварения по сравнению с нервными отставлены во времени. Они перестраивают пищеварение медленно: эффекты возникают через несколько минут и сохраняются несколько часов. Гуморальная регуляция пищеварения может осуществляться под воздействием:
-эндогенных веществ, которые вырабатываются в организме;
-экзогенных веществ, т.е. поступающих с пищей.

Эндогенные вещества участвующие регуляции пищеварения:
1.Парагормоны:
-ацетилхолин;
-адреналин;
-гистамин;
-серотонин;
-кинины;
-простагландин Е.
2.Интестинальные гормоны:
-выделяемые энтероэндокринными клетками:
-гастрин;
-секретин;
-холецистокинин-панкреозимин;
-мотилин;
-вилликинин;
-гастроингибирующий пептид (ГИП);
-панкреатический полипептид;
-бомбезин (гастринвысвобождающий пептид);
-бульбогастрон;
-энтерогастрон;
-дуокренин;
-энтероглюкагон;
-м-знкефалин;
-субстанция Р;
-нейротензин;
-соматостатин.
-выделяемые нервной тканью:
-гастрин-релизинг гормон;
-нейропептид Y;
-относящийся к кальцитониновому гену пептид;
-вазоинтестинальный пептид (VIP, ВИП);
-гастрин-релизинг гормон (гастриносвобождающий пептид);
-субстанция Р;
-соматостатин;
- м-энкефалин.
3.Гормоны:
-адреналин;
-глюкагон;
-инсулин;
-альдостерон;
-гормон роста;
-паратгормон.
4.Цитокины:
-эпидермальный фактор роста.
Некоторые из интестинальных гормонов обладают не только периферическими, но и центральным действием. Гуморальные регуляторы обладают так же модулирующим действием.
Секреция интестинальных гормонов, выделяемых энтероэндокринными клетками, находится под контролем вегетативной нервной системы. Активация парасимпатической нервной системы стимулирует выделение интестинальных гормонов, усиливающих процессы пищеварения. Активация симпатической нервной системы стимулирует выделение интестинальных гормонов, тормозящих процессы пищеварения.

Экзогенные вещества, участвующие в регуляции пищеварения
К ним относятся:
1. специи, используемые в приготовлении пищи (горчица, перец и др);
2. некоторые продукты питания (жирная пища и др);
3. некоторые продукты гидролиза питательных веществ (пептоны и др).
85. Пластическая и энергетическая роль углеводов, жиров и белков…
Белки занимают ведущее место среди органических элементов, на их долю приходится более 50% сухой массы клетки. Поступающий с пищей из внешней среды белок служит пластической и энергетической целям. Пластическое значение белка состоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обеспечении организма энергией, образующейся при расщеплении белков.
Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков — актина и миозина.
Белки в организме не депонируются, т. е. не откладываются в запас. Поэтому при поступлении с пищей значительного количества белка только часть его расходуется на пластические цели, большая же часть — на энергетические цели.
Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран и в значительной мере определяют их свойства. Велика энергетическая роль жиров. Их теплотворная способность более чем в два раза превышает таковую у углеводов или белков. Большая часть жиров в организме находится в жировой ткани, меньшая часть входит в состав клеточных структур. Жировые капельки в клетках — это запасный жир, используемый для энергетических потребностей.
Пищевые продукты, богатые жирами, обычно содержат некоторое количество липоидов — фосфатидов и стеринов. Физиологическое значение этих веществ очень велико. Они входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы.
Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран; оно является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез.
Некоторые стерины пищи, например витамин D, обладают большой физиологической активностью.
Основная роль углеводов определяется их энергетической функцией. Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др.
Глюкоза, поступающая в кровь из кишечника, транспортируется в печень, где из нее синтезируется гликоген. Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. По мере убыли глюкозы в крови происходит расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови.
Гликоген откладывается также в мышцах. При работе мышц под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, Являющегося одним из источников энергии мышечного сокращения.
Витамины не характеризуются общностью химической природы и не имеют существенного пластического и энергетического значения. Они находятся в пищевых продуктах в незначительных количествах, но оказывают выраженное влияние на физиологическое состояние организма, часто являясь компонентом молекулы фермента. Витамин А служит кофактором белка неферментной природы — родопсина; этот белок сетчатки глаза участвует в восприятии света. Витамин D (точнее, его производное — кальцитриол) регулирует обмен кальция; по механизму действия он скорее сходен с гормонами — регуляторами обмена и функций организма.
Ряд элементов, содержащихся в пище главным образом в форме минеральных солей или ионов, также относится к незаменимым пищевым веществам. По массе основную часть минеральных веществ пищи составляют хлориды, фосфаты и карбонаты натрия, калия, кальция и магния. Кроме того, абсолютно необходимы микроэлементы, называемые так потому, что они требуются в малых количествах: это железо, цинк, медь, марганец, молибден, йод, селен. Кобальт поступает в организм человека не в форме минеральных солей, а в составе готового витамина B12.
86. Энергообмен…
Обмен веществ и энергии связаны между собой. Обмен веществ сопровождается преобразованием энергии (химической, механической, электрической в тепловую).
В отличие от машин мы не преобразуем тепловую энергию в др. виды (паровоз). Мы её выделяем как конечный продукт метаболизма во внешнюю среду.
Количество тепла, выделяемое живым организмом, пропорционально интенсивности обмена веществ.
Из этого следует:
1. По количеству выделяемого организмом тепла можно оценить интенсивность обменных процессов.
2. Количество выделившейся энергии должно компенсироваться за счет поступления химической энергии с пищей (м. рассчитать должный рацион питания).
3. Энергетический обмен является составной частью процессов терморегуляции.
Факторы, определяющие интенсивность энергообмена:
1. Состояние окружающей среды - температура (+18-22оС),
- влажность (60-80%) ,
- скорость ветра (не более 5 м/с),
- газовый состав атмосферного воздуха (21% О2, 0,03% СО2, 79% N2).
Это показатели «зоны комфорта».Отклонение от \"зоны комфорта\" в любую сторону изменяет интенсивность обмена веществ, следовательно количество вырабатываемого тепла.
2. Физическая активность. Сокращение скелетных мышц является самым мощным источником тепла в организме.
3. Состояние нервной системы. Сон или бодрствование, сильные эмоции, регулируются через вегетативную нервную систему -
- симпатическая нервная система оказывает эрготропное действие (усиливает процессы распада с высвобождением энергии),
- парасимпатическая - трофотропное действие - (стимулирует сбережение,
накопление энергии).
4. Гуморальные факторы - БАВ и гормоны:
а). Трофотропное действие - ацетилхолин, гистамин, сератонин, инсулин, СТГ.
б). Эрготропное действие - адреналин, тироксин.
Клинико-физиологическая оценка энергетического обмена
Показатели энергообмена: 1. Основной обмен. 2. Рабочий обмен.
Основной обмен
Основной обмен - это минимальный обмен веществ, который характеризуется минимальным количеством энергии, которое необходимо для поддержания жизнедеятельности организма в состоянии физического и психического покоя.
Энергия ОО необходима для:
1. Обеспечение базального уровня обмена веществ в каждой клетке.
2. Поддержание деятельности жизненно-важных органов (ЦНС, сердце,
почки, печень, дыхательная мускулатура).
3. Поддержание постоянной температуры тела.
Для определения ОО необходимо соблюдать следующие условия:
- физический и эмоциональный покой,
- \"зона комфорта\" (см. выше),
- натощак (не менее 12-16 часов после приема пищи, чтобы избежать
эффекта \"специфически-динамического действия пищи\", начинается через 1 час после приема пищи, достигает максимума через 3 часа, наиболее сильно повышается при белковом питании (на 30%)),
- бодрствование (во время сна ОО снижается на 8-10%).
Величина основного обмена зависит от:
-пола (у мужчин на 10% больше),
- роста (прямо пропорциональная зависимость), /правило поверхности тела/.
- возраста (до 20-25 лет увеличивается, максимальный прирост - в 14-17 лет, до 40 лет - \"фаза плато\", затем снижается),
веса (прямо пропорциональная зависимость), правило поверхности тела.
Понятие о должном основном обмене.
Определяется должный основной обмен (ДОО) по таблицам (с учетом всех этих факторов).
В норме ДОО для мужчин равен 1 ккал (4,19 кДж)/кг/час.
Для женщин - на 10% меньше.
В среднем для человека среднего возраста и усредненных параметров ОО составляет 1400-1700 ккал/сутки.
Могут быть ситуации, когда при равных параметрах имеем разные значения ОО, это указывает на отклонения в функциональном состоянии. На пример,
по показателям основного обмена судят о функциональном состоянии эндокринных желез, главным образом, щитовидной (гипер- и гипотиреоз).
Рабочий обмен
Рабочий обмен - количество тепла, выделяемого при работе.
РО значительно превышает ОО, зависит от вида труда.
Выделяют следующие группы, исходя из интенсивности рабочего обмена:
1. Лица умственного труда (2200-3300 ккал) - решение простых задач
повышает ОО на 2-3%.
2. Механизированный труд, сфера обслуживания (2350-3500 ккал).
3. Механизированный труд, сфера обслуживания со значительными
физическими усилиями (2500-3700 ккал).
4. Немеханизированный труд (2900-4200 ккал).
Есть и больше (до 5000 ккал), но это уже каторжный труд.
Методы определения энергетического обмена.
1. Прямая калориметрия.
Метод основан на улавливании и измерении тепловой энергии, теряемой организмом в окружающее пространство. Измеряется с помощью калориметрических камер (биокалориметров) (по кол-ву Н2О, удельной теплопроводности и разнице температур).
2. Непрямая (косвенная) калориметрия:
Оценка энергозатрат - косвенно, по интенсивности газообмена.
В процессе расщепления - в-во + О2 = СО2 + Н2О + Q (энергия).
Т.е., зная количество поглощенного О2 и выделенного СО2, можно судить косвенно о количестве выделившейся энергии. Интенсивность газообмена характеризуется дыхательным коэффициентом.
Дыхательный коэффициент (ДК) - соотношение между объемом образовавшегося СО2 и поглощенного О2.
- для углеводов ДК=1(С6Н12О6 + 6О2=6СО2+6Н2О + Q),
- для белков - 0,8,
- для жиров - 0,7.
При смешанной пище - ДК - от 0,7 до 1,0, т.е. = 0,85.
Каждому ДК соответствует своё кол-во энергии, которое при этом выделяется (свой Калорический Эквивалент Кислорода. КЭО2).
КЭО2 - количество тепла, которое выделяется в соответствующих
условиях при потреблении организмом 1 л кислорода. Выражается в ккал. Находится по таблице, в зависимости от конкретного ДК.
Для получения показателей газообмена, необходимых для расчета основного обмена, используют следующие методы.
а) метод полного газового анализа - метод Дугласа-Холдейна.
- по количеству и соотношению выделенного СО2 и поглощенного О2,
менее точный, чем прямая калориметрия, но более точный, чем метод неполного газоанализа
б) метод неполного газового анализа - по оксиспирограмме.
- самый неточный, но самый распространенный,
- позволяет быстро и без больших затрат получить ориентир.результат.
Этапы расчетов энергозатрат по оксиспирограмме:
- количество поглощенного кислорода за 1 минуту.
- ДК=0,85 (априори, усредненный).
- ему соответствует КЭО2 = 4,86 ккал.
- кол-во погл. О2 за 1 мин. x 1440 мин. в сутках = кол-во энергозатрат.
найденный показатель сравниваем с должным ОО, (опред. по таблице).
87. Тепловой обмен…
Все живые организмы делятся на:
Гомойотермные - теплокровные (человек и млекопитающие).
Пойкилотермные - холоднокровные
Образующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.
Теплопродукция и теплоотдача.
Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.
Суммарная теплопродукция в организме состоит из:
«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях
«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы.
Уровень теплообразования в организме зависит от:
-величины основного обмена, специфического динамического действия принимаемой пищи
-мышечной активности
-интенсивности метаболизма
Наибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении - «сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.
У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (~ 3 раза ) по сравнению с уровнем основного обмена.
Механизмы теплоотдачи:
Излучение - способ отдачи тепла в окружающую среду поверхностью тела человек в виде электромагнитных волн инфракрасного диапазона. Количество рассеиваемого тепла прямопропорционально площади поверхности излучения и разности температур кожи и окружающей среды.
При понижении температуры окружающей среды излучение увеличивается, при повышении температуры - понижается.
Теплопроведение - способ отдачи тепла при соприкосновении тела человека с другими физическими телами. Количество отдаваемого при этом тепла прямопропорционально:
а) разнице средних температур контактирующих тел
б) площади контактирующих поверхностей
в) времени теплового контакта
г) теплопроводности контактирующего тела
Сухой воздух, жировая ткань характеризуется низкой теплопроводностью.
Конвекция - способ теплопередачи, осуществляемый путем переноса тепла движущимися частицами воздуха (или воды). Для конвенции требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Количество отдаваемого конвекцией тепла увеличивается при увеличении скорости движения воздуха (ветер, вентиляция).
Излучение, теплопроведение и конвекция становятся неэффективными способами теплоотдачи при выравнивании средних температур поверхности тела и окружающей среды.
Испарение - способ рассеивания организмом тепла в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота или влаги с поверхности кожи или влаги со слизистых дыхательных путей.
У человека постоянно идет потоотделение потовыми железами кожи (36 гр/час при 20 0С) увлажнение слизистых дыхательных путей. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде (костюм - \"сауна\") усиливает потоотделение (до 50 - 200 гр/час). Испарение ( единственный из способов теплоотдачи) возможно при выравнивании температур кожи и окружающей среды при влажности воздуха менее 100 процентов.
Температура тела человека
В тех органах и тканях, где обменные процессы протекают с большой скоростью, образуется большое количество тепла.
Решающую роль в перераспределении тепла между тканями с различной теплопродукцией и предупреждении перегревания играет кровь. Обладая высокой теплоемкостью, кровь содействует выравниванию температур в различных частях тела. Подобным образом, за счет изменения скорости кровотока, осуществляется согревание или охлаждение поверхности тела.
Температура поверхностных тканей ниже, чем температура более глубоких тканей, где она составляет 36,7 - 37,0 0С и ее суточные колебания не превышают 1 0С. Это - \"гомойотермное ядро\", т.е. ткани, расположенные на глубине 1 см от поверхности тела и глубже. На поверхности же тела суточные колебания температуры больше и она различна на разных участках - \"пойкилотермная оболочка\" тела человека.
Относительное постоянство температуры сохраняется в большей массе глубоких тканей (\"ядро\"), если организм находится в среде с температурой 25 - 26 0С - \"термонейтральная зона\" или \" температура комфорта\".
При снижении температуры окружающей среды масса глубоких тканей с постоянной температурой (\"ядра\") уменьшается, при повышении - возрастает.
В течении суток максимальное значение температуры тела наблюдается в 18-20 часов, минимальное - к 4-6 часам утра.
Терморегуляция
Терморегуляция - это совокупность физиологических и психофизиологических механизмов и процессов, направленных на поддержание относительно постоянства температуры тела. Это достигается с помощью баланса между количеством тепла, рассеиваемого организмом за то же время в окружающую среду.
Восприятие температурных раздражений осуществляется:
Холодовыми рецепторами. Количественно расположены больше на поверхности тела, повышает частоту импульсации в ответ на охлаждение и снижают ее в ответ на нагревание.
Тепловыми рецепторами. Количественно расположены больше в гипаталамусе, действуют противоположным, чем холодовые рецепторы, образом.
Афферентный поток импульсов, поступая в соматосенсорную кору больших полушарий, формирует терморегуляторные реакции.
Механизмы регуляции теплообмена:
1) Центральные
2) Эффекторные
Центральные механизмы выполняются, главным образом, центром терморегуляции, локализующимся в медиальной преоптической области переднего гипоталамуса и заднем гипаталамусе, где имеются:
а) термочувствительные нейроны, \"задающие\" уровень поддерживаемой температуры тела;
б) эффекторные нейроны, управляющие процессами теплопродукции и теплоотдачи./центр теплопродукции и центр теплоотдачи/.
На основе анализа и интеграции непрерывно определяется среднее значение температуры тела и приводится в соответствие фактическая и заданная температура.
Эффекторные механизмы регуляции теплообмена через изменение интенсивности кровотока в сосудах поверхности тела изменяют величину теплоотдачи организма.
Если уровень средней температуры тела, несмотря на расширение поверхностных сосудов, 1)превышает величину установочной температуры, происходит резкое усиление потоотделения. В случаях, когда, несмотря на резкое сужение поверхностных сосудов и минимальное потоотделение, уровень средней температуры становится 2)ниже величины \"установочной\" температуры, активизируются процессы теплопродукции.
Если, несмотря на активацию обмена веществ, величина теплопродукции становится меньше величины теплоотдачи, возникает гипотермия - понижение температуры тела.
Гипотермия возникает тогда, когда интенсивность теплопродукции превышает теплоотдачу/способность организма отдавать тепло в окружающую среду/.
В случае продолжительной гипертермии может развиваться \"тепловой удар\" -
В более легких случаях наблюдается\" тепловой обморок\",
Как при гипертермии, так и при гипертермии имеют место нарушения основного условия поддержания постоянства температуры тела - баланса теплопродукции и теплоотдачи.
В процессе эволюции в живых организмах выработалась особая ответная реакция на попадание во внутреннюю среду чужеродных веществ - лихорадка.
Это - состояние организма, при котором центр терморегуляции стимулирует повышение температуры тела. Это достигается перестраиванием механизма \"установки\" температуры регуляции на более высокую. Включаются механизмы, 1)активирующие теплопродукцию (повышение терморегуляционного тонуса мышц, мышечная дрожь) и 2)снижающие интенсивность теплоотдачи (сужение сосудов поверхности тела, принятие позы, уменьшающей площадь соприкосновения поверхности тела с внешней средой).
Переход \"установочной точки\" происходит в результате действия на соответствующую группу нейронов преоптической области гипоталамуса эндогенных пирогенов - веществ. вызывающих подъем температуры тела ( альфа- и бетта- интерклейкин-1, альфа-интерферон, интерклейкин-6).
Система терморегуляции использует для осуществления своих функций компоненты других регулирующих систем.
Такое сопряжение теплообмена и других гомеостатических функций прослеживается, прежде всего, на уровне гипоталамуса. Его термочувствительные нейроны изменяют свою биоэлектрическую активность под действием эндопирогенов, половых гормонов, некоторых нейромедиаторов.
Реакции сопряжения на эффекторном уровне. В качестве эффекторов в реакциях теплообмена используются сосуды поверхности тела, что обусловлено выполнением более важной гомеостатической потребности организма - поддержания системного кровотока.
А) Когда температура поверхности тела выравнивается с таковой окружающей среды, ведущее значение приобретает потоотделение и испарение пота и влаги с поверхности тела.
Б) Если при подъеме температуры тела, в силу потоотделения теряется жидкость, уменьшается объем циркулирующей крови, то включаются системы осмо- и волюморегуляции ОЦК, как более древнее и более важные для сохранения гомеостаза.
В) При действии как гипер-, так и гипотермии могут наблюдаться сдвиги кислотно-щелочного равновесия.
*При действии на организм высокой температуры активация потоотделения и дыхания ведет к усиленному выделению из организма углекислого газа, некоторых минеральных ионов и за счет гиперпноэ и интенсификации потоотделения развивается дыхательный алколоз, при дальнейшем нарастании гипертермии - метаболический ацидоз.
*При действии гипотермии развивающаяся гиповентиляция является общим эффекторным механизмом, обеспечивающим снижение теплопотерь, поддержание на более низком уровне рН крови соответственно сниженной температуре тела.
88. Гомеостатические функции почек…
Почки выполняют ряд гомеостатических функций:
1. регуляция водно-солевого баланса в организме,
2. поддержание постоянства обьема жидкостей тела,
3. поддержание осмотического давления крови (за счет уровня глюкозы, аминокислот, липидов, гормонов в ней),
4. поддержание ионного состава крови,
5.регуляция кислотно-щелочного баланса (рН мочи - от 4,5 до 8,4, тогда как рН крови - постоянная),
6. образование мочи,
7. выделение продуктов обмена веществ,
8. удаление из крови чужеродных соединений и нейтрализация токсических веществ,
9. участие в регуляции развития клеток крови в органах кроветворения - синтез эритропоэтинов и лейкопоэтинов,
10. участие в регуляции артериального давления - синтез и выделение в кровь ренина,
11. секреция ферментов и БАВ (брадикинин, простагландины, урокиназа),
12. участие в регуляции свертывания крови.
В основе перечисленных функций лежат процессы, происходящие в паренхиме почек:
1. Клубочковая фильтрация - фильтрация из плазмы крови в капсулу почечного клубочка безбелковой жидкости - первичной мочи.
2. Канальцевая реабсорбция - обратное всасывание воды и растворенных в ней веществ из просвета канальца в капиллярное русло.
3. Секреция - процесс активной деятельности канальцевого эпителия, в результате которого из организма удаляются вещества, не фильтруемые из Мальпигиева клубочка в капсулу Шумлянского-Боумена.
4. Синтез новых соединений, поступающих в кровь или мочу (ренин, уромукоид, гиппуровая кислота, некоторые простагландины и т.д.).
Процессы выделения - это конечное звено обмена веществ в организме. В результате него из организма удаляются неиспользуемые продукты обмена.
К органам выделения относятся: легкие, желудочно-кишечный тракт, потовые железы, почки.
Легкие - выделяют из организма углекислый газ, пары воды, а также некоторые летучие вещества: пары эфира, хлороформа, алкоголя и др. Участвуют в регуляции кислотно-щелочного обмена.
Желудочно-кишечный тракт - экскретирует: соли тяжелых металлов, продукты превращения веществ, поступающих с желчью (в частности - желчные пигменты).
Слюнные железы и железы желудка выделяют: некоторые тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты), некоторые чужеродные органические соединения (красители - индигокармин).
Печень - экскретирует: продукты обмена гемоглобина, азотистого метаболизма и многие другие вещества.Поджелудочная железа и кишечник - выделяют: соли тяжелых металлов, лекарственные вещества
Потовые железы - экскретируют: воду, минеральные соли, продукты диссимиляции - мочевину, мочевую кислоту, креатинин. Кроме того, при интенсивной мышечной работе через потовые железы может выделяется молочная кислота. При нарушении функции почек роль кожи в выделительных процессах значительно возрастает.
Среди органов выделения особое место занимают сальные и молочные железы, которые выделяют не конечные продукты обмена веществ, а продукты, имеющие определенное физиологическое значение (молоко, кожное сало).
Главным же выделительным органом являются почки.
89. Выделительная функция почек. Механизмы образования первичной мочи…
Общая характеристика выделительной функции почек.
1. Ряд веществ, находящихся в плазме крови в норме отсутствуют во вторичной моче. Это вещества, которые в норме практически не проходят через почечный барьер, и вещества которые в норме в почках полностью реабсорбируются, это, как правило, биологически ценные необходимые организму вещества /аминокислоты, глюкоза/.
2. Другие вещества находятся во вторичной моче в концентрациях, значительно превышающие таковые в плазме крови. Это прежде всего продукты обмена белков/мочевины в 65 раз больше, мочевой кислоты – больше в 12 раз/. В этом проявляется концентрирующая функция почек.
3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
Процесс мочеобразования включает в себя следующие механизмы:
1. Клубочковая фильтрация. 2. Канальцевая реабсорбция. 3. Секреция.

Клубочковая фильтрация.
Клубочковая фильтрация - процесс фильтрации из плазмы крови, протекающей через капилляры клубочка в полость капсулы почечного клубочка воды и растворенных в плазме веществ (за исключением крупномолекулярных соединений). Фильтрация в клубочках осуществляется через поры эндотелия, базальную мембрану, щели между клетками эпителия внутренней стенки капсулы.
Через почечный фильтр проходят молекулы, молекулярная масса которых не превышает 60 тысяч дальтон, при молекулярной массе от этого уровня до 70 тысяч дальтон /гемоглобин, альбумин/ через поры базальной мембран проходят 1-3% молекул, молекулярная масса порядка 80 тысяч дальтон является абсолютным пределом для прохождения молекул через поры мембраны.
Клубочковая фильтрация зависит от:
1. Гидростатического давления крови в капиллярах клубочка (70 мм рт. ст.).
2. Онкотического давления белков плазмы крови (20 мм рт. ст.).
3. Давления в капсуле Шумлянского, т.е. от внутрипочечного давления-(15 мм.рт.ст.).
Клубочковая фильтрация обусловлена разностью между гидростатическим давлением в капиллярах и величинами онкотического и внутрипочечного давления. ФД = ГД - (ОД + ВД), где ФД - фильтрационное давление, ГД - гидростатическое давление, ОД - онкотическое давление крови, ВД - внутрипочечное давление.
Фильтрационное давление составляет 70мм рт. ст - (20мм рт. ст. + 15мм рт. ст.) = 35 мм рт. ст..
В 1 минуту через почки проходит около 1200 мл крови. При этом образуется 120 мл. фильтрата (первичная моча), это скорость клубочковой фильтрации, в норме она составляет 11-125 мл/мин. За сутки образуется 150-170 л. первичной мочи. Содержание неорганических и органических веществ (за исключением белков) в первичной моче такое же, как и в плазме крови.
90. Выделительная функция почек. Образование конечной (вторичной) мочи…
Общая характеристика выделительной функции почек.
1. Ряд веществ, находящихся в плазме крови в норме отсутствуют во вторичной моче. Это вещества, которые в норме практически не проходят через почечный барьер, и вещества которые в норме в почках полностью реабсорбируются, это, как правило, биологически ценные необходимые организму вещества /аминокислоты, глюкоза/.
2. Другие вещества находятся во вторичной моче в концентрациях, значительно превышающие таковые в плазме крови. Это, прежде всего продукты обмена белков /мочевины в 65 раз больше, мочевой кислоты – больше в 12 раз/. В этом проявляется концентрирующая функция почек.
3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
Процесс мочеобразования включает в себя следующие механизмы:
1. Клубочковая фильтрация. 2. Канальцевая реабсорбция. 3. Секреция.
Канальцевая реабсорбция - процесс обратного всасывания воды и ряда растворенных в ней веществ. Из 170 литров образующейся первичной мочи выводится в виде конечной мочи лишь 1-1,5 литра в сутки. Остальная жидкость и значительное количество растворенных в ней веществ всасывается в канальцах и поступает в кровь. Такой объем реабсорбции обусловлен большой суммарной поверхностью канальцев. Достаточно сказать, что только длина почечных канальцев достигает 100 километров, а площадь - 50 м2. Ребсорсорбция веществ, растворенных в крови, находится в зависимости от их концентрации в крови.
Вещества делятся на
беспороговые /непороговые/, они выделяют с мочой при любой /низкой,высокой/ их концентрации в крови, к ним относятся мочевина, креатинин, инулин, маннитол и др. и
пороговые/ все жизненно важные для организма вещества, выделение которых с мочой начинается лишь при достижении некоторого порога/уровня/ их концентрации в крови. Так, если концентрация глюкозы в крови не превышает 150-180 мг%, то она полностью реабсорбируется. Если же превышает эти величины, то часть глюкозы поступает в мочу.
Избирательность реабсорбции.
1.Многие вещества в норме реабсорбируются полностью. Это биологически ценные, жизненно важные вещества : витамины, аминокислоты, низкомолекулярные белки.
2.Реабсорбируется большая часть многих веществ. Это натрий, калий, кальций, хлор и др.
3.Конечные продукты обмена веществ (мочевина, мочевая кислота, аммиак) реабсорбируются в значительно меньшей степени/выводится 50-70%/. 4.Некоторые вещества (сульфаты, креатинин) полностью выводятся из организма.
Реабсорбция подразделяется на облигатную /обязательную/ и факультативную/ не обязательную, зависящую от функционального состояния (проницаемости стенки канальцев, скорости движения жидкости по канальцам, величине осмотического градиента).
Канальцевая реабсорбция обеспечивается:
1.активным транспортом,2. пассивным транспортом.
Активный транспорт - это транспорт против градиента: электрохимического, концентрационного или осмотического. Активный процесс всегда идет в одном направлении и характеризуется высокой специфичностью в отношении того или иного вещества.
Виды активного транспорта: а) первично-активный - это перенос вещества против злектрохимического градиента, за счет энергии клеточного метаболизма (реабсорбция натрия и калия происходит при участии фермента - Na+, K+ - АТФ-азы, использующей знергию АТФ), б) вторично-активный - это перенос вещества против концентрационного градиента, но без затраты энергии клеток непосредственно на этот процесс (реабсорбция глюкозы, аминокислот).
Эти органические вещества из просвета канальца входят в эпителиальную клетку проксимального канальца с помощью специального переносчика, который обязательно должен присоединить Nа+. Комплекс - белок-переносчик + органическое вещество + Nа+ перемещается через мембрану щеточной каймы и уже внутри клетки диссоциирует.
Пассивный перенос осуществляется по принципу облегченной диффузии (реабсорбция Н2О, СО2, хлориды). Пассивный транспорт может осуществляться по электрохимическому градиенту (Н2О) и по концентрационному градиенту (мочевина).
В проксимальном канальце происходит облигатная реабсорбция, реабсорбируются 65-85 % объема первичной мочи (Н2О), а так же 98% аминокислот, 77% мочевой кислоты, 100% глюкозы, 60% мочевины, 95% витаминов, 85% Nа+, 99% Cl-, 100% К+, 95% РО4, 80% НСО3-
Реабсорбция веществ из проксимальных канальцев в кровоток происходит за счет первичной реабсорбции натрия, которая осуществляется за счет активного транспорта /первично-активный транспорт/,против градиента концентрации. Перенос натрия в области апикальной мембраны частично сопряжен с транспортом глюкозы и с транспортом аминокислот /симпорт/, так же частично связан с обратным транспортом Н+/антипорт/, вторично-активный транспорт. За счет возникающего осмотического градиента происходит пассивная реабсорбция воды, это вызывает концентрированию некоторых веществ в первичной моче, что позволяет им частично реабсорбироваться по градиенту концентрации.
Реабсорбция белков в этом отделе нефрона осуществляется путем пиноцитоза. Первичная моча в конечной части проксимальных канальцах изоосмолярна.
Петля Генле /нисходящая и восходящая части петли/. Ход их расположен параллельно друг другу, а ток жидкости противоположен, формирует противоточно - множительную систему (поворотно-противоточная система). В ней реабсорбируется 10- 25% объема первичной мочи, в основном электролиты.
Только почки теплокровных способны образовывать мочу, имеющую большую концентрацию осмотически активных веществ, чем таковая в крови /осмотическое концетрирование/, почки у всех других животных способны только к осматическому разведению, человек сохранил и эту способность, но чаще- концентрирование.
Концентрационная способность нефрона обеспечивается противоточно-множительной системой. Нисходящая часть петли Генли непроницаема для Na+ и хорошо проницаема для Н2О, в восходящей части петли Генли активно реабсорбируется Na+, но она непроницаема для воды. Реабсорбция натрия создает гиперосмотичность в интерстиции, что способствует выходу дополнительных порций воды из канальцев, что способствует быстрому уменьшению жидкости в канальцах, осмотическому концентрированию мочи. Параллельно умножается эффект реабсорбции воды/Н2О/
В дистальных канальцах происходит факультативная реабсорбция, реабсорбируется 9% общего объема первичной мочи. Оставшийся 1% - вторичная моча.
Канальцевая секреция имеет большое значение в выделении из организма продуктов обмена и чужеродных веществ.
Секреция позволяет быстро выводить с мочой органические кислоты, пенициллин, органические основания/холин/, ионы /К+, при избытке/. Транспорт в большинстве случаев осуществляется за счет переносчиков, которые обладают высоким сродством к переносимым веществам. Скорость экскреции того или иного вещества изменяется пропорционально его концентрации в плазме крови, при этом скорости экскреции различных веществ существенно различаются.
Сочетание различных процессов при проведении различных веществ Разные вещества выводятся по-разному: инулин - только фильтрацией, глюкоза - фильтрацией + реабсорбция, парааминогиппуровая кислота - фильтрацией + секреция, К+ - фильтрацией + реабсорбция + секреция.
Физиологические показатели деятельности почек:
Клубочковая фильтрация - в норме клубочковая фильтрация составляет 100-130 мл/мин - по клиренсу креатинина. При снижении этого показателя ниже 70,0 -развивается почечная недостаточность.
Почечный плазмоток - указывает количество плазмы, которая орошает проксимальные извитые канальцы. - В норме = 650-720 мл/мин при общем почечном кровотоке 1100-1200 мл/мин .
Фильтрационная фракция - характеризует ту часть протекающей через клубочки плазмы, которая подвергается в них процессу ультрафильтрации. В норме = 16-19%.
Величина максимальной канальцевой реабсорбции глюкозы - в норме = 350 – 370 мг/мин - и реабсорбция воды - (В норме = 99%) - служит показателем процесса канальцевой реабсорбции.
Максимальной канальцевой секреции кардиотраста или диотраста - в норме = 90-98 мг/мин - характеризуют функциональную секреторную способность канальцев.
Клинико-физиологическая оценка деятельности почек
1.определение суточного количества мочи. Объем выделяемой мочи за сутки в норме составляет около 1,1 - 1,6 литра (зависит от состояния водного обмена). Полиурия - увеличение объема мочи, выделяемой за сутки, Олигоурия – уменьшение, Анурия - отсутствие, прекращение мочеобразования. Никтурия - преобладание ночного диуреза над дневным. Гиперстенурия - его повышение. Гипостенурия - его понижение.
2.определение удельного веса мочи. Удельный вес (или плотность) мочи колеблется в пределах от 1,014 до 1, 025.
3.определение белков, сахара, солей, форменных элементов крови, ферментов в моче. Глюкозурия - появление глюкозы в моче (когда концентрация глюкозы в крови превышает пороговую величину - 150-180 мг%). Концентрация белка в моче не должна превышать 0,033% - у новорожденных, а у взрослых - следы. Протеинурия - появление белка в моче. Ацетонурия - появление ацетона в моче (в норме у здорового человека ацетона в моче нет). Лейкоцитурия - много лейкоцитов в моче (в норме их не более 10 - в поле зрения).Гематурия - появление эритроцитов (в норме их быть не должно).Билирубинурия - появление желчных пигментов в крови
4.определение мочевины, мочевой кислоты, общего азота и креатинина.
5.определение клиренса. Почечный клиренс - это скорость очищения плазмы.
а. Клиренс инулина - соответствует скорости клубочковой фильтрации (это часть общего почечного плазмотока, фильтруемая в мочевыводящие канальцы)
б. Клиренс парааминогиппуровой кислоты - равен величине общего почечного плазмотока.
-Рентгеноконтрастные методы,
-Радиоизотопные методы (в кровь вводят кардиотраст, содержащий I131 Далее исследуют кривые накопления и выведения изотопа. Сканирование.)
-УЗИ
Водно-солевой баланс.
91. Регуляция функции почек…
Регуляция мочеобразования.
1. Нервная. 2. Гуморальная (наиболее выраженная).
Нервная регуляция мочеобразования - рефлекторное расширение сосудов почек увеличивает диурез. Раздражение симпатических волокон приводит к сужению почечных сосудов, а это в свою очередь - снижает фильтрационное давление и уменьшает или даже прекращает диурез. Нервная система может рефлекторно изменить секрецию гормонов гипофиза (вазопрессин или АДГ) и коры надпочечников (из \"минералокортикоидов\" - альдостерон - Na - сберегающий). Нервная же система может вызвать болевую анурию (при болевых раздражениях выброс АДГ усиливается).
Всякое повышение кровяного давления, связанное с возбуждением нервной системы, приводит к усилению клубочковой фильтрации, а понижение к уменьшению фильтрации. Эти реакции почек направлены на поддержание уровня кровяного давления и постоянства объема крови.
Гуморально-гормональная регуляция мочеобразования:
Она более выражена по сравнению с нервной (доказано в опытах на собаках с пересадкой почки в область шеи, где почка функционировала, как и в норме, в соответствии с условиями).
Гормоны, регулирующие работу почек (мочеобразование)
Вазопрессин (АДГ - антидиуретический гормон). В нормальных условиях на клубочковую фильтрацию не влияет, но усиливает обратное всасывание воды - тем самым уменьшает диурез. При недостаточной функции задней доли гипофиза, выделяющей АДГ, стенка дистального отдела нефрона становится непроницаемой для воды и почка выводит ее до 25 литров в сутки - несахарное мочеизнурение.
Альдостерон (гормон коркового вещества надпочечников) - Na+ - сберегающий гормон - усиливает реабсорцию натрия в проксимальных канальцах, усиливает секрецию К+ в дистальных канальцах.
Натрийуретический гормон вырабатывается в предсердии при раздражнии волюморецепторов - (действует на проксимальные канальцы, восходящую часть петли Генли)
Инсулин- снижает реабсорбцию К+. Паратгормон - ( влияет на проксимальные и дистальные канальцы) - усиливает реабсорбцию Са2+, снижает канальцевую реабсорбцию фосфата, Кальцитонин - уменьшает реабсорбцию Са2+ в проксимальных канальцах.
Ренин-ангиотензиновая система (ренин-ангиотензиноген-ангиотензин I-ангиотензин II) Выброс ренина происходит при снижении артериального давления, так как возникает угроза прекращения фильтрации и образования первичной мочи. Ангиотензин 11 представляет собой одно из всех известных сосудосуживающих веществ. Длительно повышает тонус гладкой мускулатуры артериол, это приводит к повышению сосудистого сопротивления, что в свою очередь повышает артериальное давление и восстанавливает фильтрацию. Кроме этого, ангиотензин 11вызывает выброс альдостерона.
- Адреналин, норадреналин (гормоны мозгового слоя надпочечников) усиливают выработку ренина, непосредственно возбуждая адренорецепторы юкстагломерулярных клеток, а также косвенно активируя барорецепторы в результате сокращения гладкой мускулатуры приносящих артериол.
92. Водный баланс…
одно-солевой баланс- обеспечивается совокупностью процессов поступления воды и электролитов в организм, распределения их во внутренней среде и выделения из организма. Выделяют:
1. Водный баланс - равенство объемов выделяющейся из организма и поступающей за сутки воды. 2. Электролитный баланс - (Na, К, Са и т.д.)
Возмущающие воздействия(колебание температуры среды; изменение физической активности; изменение характера питания) - приводят к изменению отдельных показателей.
Водный баланс
Поступление: 2.500 мл Выделение: 2.500 мл
Питье и жидкая пища - 1200 С мочей - 1500
С твердой пищей - 1000 С потом - 500
Эндогенная Н2О
(при окислении) - 300 С выделяемым воздухом - 400
С калом - 100
Внутренний цикл жидкостей ЖКТ /в мл/. Слюна – 1500. Желудочный сок – 2500. Желчь – 500. Сок поджелудочной железы – 700. Кишечный сок – 3000. Итого: секреция: 8200 - 8100 (реабсорб.) = 100 (с калом)
Н2О - важнейший неорганический компонент организма, обеспечивающий связь внешней и внутренней среды, транспорт веществ между клетками и органами.
Эндогенная Н2О - образуется при окислении веществ: ( окисление Н+)
100 г жира - 100 мл Н2О,100 г белка - 40 мл Н2О,100 г углевод. - 55 мл Н2О. Эндогенной Н2О мало для нужд организма, особенно для выведения шлаков.
Общее количество воды в организме - 44-70% массы тела, примерно 38-42 литра. В тканях - от 10% (жировая ткань) до 83-90% в почках и крови.
Уменьшение воды: а) с возрастом, б) у женщин, в) при ожирении
Н2О в организме образует водные пространства:
1. Внутриклеточное пространство (2/3 общей воды)
2. Внеклеточное пространство (1/3)
3. Вода полостей тела ( при патологии - в брюшной, плевральной)
Внеклеточное пространство:
а) внутрисосудистый сектор - плазма крови - 4 - 5% от массы тела
б) Интерстициальный сектор - 15% от массы тела ( максимально подвижный объем при избытке или недостатке воды).
Вся вода обновляется за месяц. Внеклеточная вода за неделю. Увеличение поступления воды - гипергидратация - накапливается в интерстициальном секторе. При водной интоксикации ( понижается осмотическое давление в интерстиции, происходит набухание клеток, их осмотическое давление понижается, начинается возбуждение нервных центров и как следствие - судороги), Понижение воды в интерстиции, как следствие сгущение крови и нарушение гемодинамики. Потеря 20% воды от массы тела приводит к смерти.
Регуляции водного баланса происходит:
за счет процессов и механизмов поддерживающих постоянство объема жидкости в организме.
2.за счет оптимального распределения воды между водными пространствами и секторами организма.
Факторы поддержания водного баланса
осмотическое и онкотическое давление жидкостей водных пространств /осморецепторы/,
2. гидростатическое и гидродинамическое давление крови/волюморецепторы/,
3. проницаемость гистогематических барьеров и других биомембран,
4.величина активного транспорта,
5.состояние нейро-эндокринных механизмов регуляции деятельности почек, других органов выделения,
6.питьевое поведение и жажда
Водный баланс тесно связан с обменом электролитов.
Электролитный баланс
Суммарная концентрация ионов формирует осмотическое давление, определяет функциональное состояние возбудимых тканей; проницаемость биомембран и др. Так как синтез минеральных веществ в организме не идет, в организм они попадают только с пищей.

Комментарии:

Вы не можете оставлять комментарии. Пожалуйста, зарегистрируйтесь.