Реферат: Использование в медицине полимерных материалов

Научные открытия всегда приносят пользу. Даже самые незначительные из них, как правило являются кирпичиками в общем здании науки, или очередной ступенью лестницы, по которой человечество поднимается… Ну, куда оно поднимается, это человечество, никто точно не знает. Может, не поднимается, а опускается…

Дата добавления на сайт: 01 июля 2024


Скачать работу 'Использование в медицине полимерных материалов':


Содержание
Введение
История мировой полимерной революции
Что же такое полимеры
Наука о полимерах
Классификация полимеров
Свойства полимеров
Изготовление полимеров
Применение полимеров
Коллаген
Синтез полимеров
Полимерный клей
Полимерный медицинский электрет – полимедэлПолимедэл. Открытие полимедэлаПрименение
Действие полимедэлаАнкета
Заключение
Литература
Введение
Научные открытия всегда приносят пользу. Даже самые незначительные из них, как правило являются кирпичиками в общем здании науки, или очередной ступенью лестницы, по которой человечество поднимается… Ну, куда оно поднимается, это человечество, никто точно не знает. Может, не поднимается, а опускается…
Есть научные открытия, которые за достаточно короткий срок существенно изменяют мир, в котором мы живем. Не всегда в лучшую сторону, хотя однозначных суждений сделать нельзя. Возьмем, к примеру, атомную бомбу – зло в чистом виде, но ведь атомную энергию можно использовать и в мирных целях.
Тема моего доклада «Использование в медицине полимерных материалов» очень актуальна на сегодняшний день.
Цель: изучить имеющиеся научные материалы по использованию полимеров в медицины и выявить области их применения.
Задачи:
1. Изучить имеющиеся материалы по данной теме;
2. Показать значимость полимерных материалов в деле сохранения здоровья человека;
3. Провести анкетирование осведомленности учеников по данной теме;
Согласно поставленным мной задачам, определяется последовательность работы и методы исследования.
Методы исследования:• Отбор материала ;• Изучение имеющейся литературы;• Анализ данных;• Структурирование материала;• Опрос учеников по данной проблеме; • Обобщение полученной информации
История мировой полимерной революции
Конец 19-го, начало 20-го века – начало научной революции, которая продолжается до сих пор. В это время были совершены многие значительные открытия, без которых мир сегодня был бы совсем другим. Одним из таких открытий стало изобретение искусственных полимеров, которое изменило мир.
В 50-е годы 20-го века полимеры превратились в одну из основных мировых индустрий, которая влияет на все сферы жизни человека. Полимеры позволили усовершенствовать производство «классических» видов продукции – упаковки, тканей и т.д. Но самое главное – из них стали производить новую продукцию, которой человечество ранее не знало: полимеры используются в производстве электроники, компьютеров, телевизоров, автомобилей и т.д. Пластиковые материалы получили широкое распространение в медицине – заменители крови, искусственные органы, протезы. Ранее эти вещи казались фантастикой.
Полимерные вещества внедрились во все сферы человеческой деятельности - технику, здравоохранение, быт. Ежедневно мы сталкиваемся с различными пластмассами, резинами, синтетическими волокнами.
Что же такое Полимеры
Полимеры - высокомолекулярные соединения (ВМС), вещества с высокой молекулярной массой (от нескольких тысяч до нескольких миллионов), в которых атомы, соединенные химическими связями, образуют линейные или разветвленные цепи, а также пространственные трехмерные структуры. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества.
В зависимости от строения основной цепи ВМС делятся на линейные, разветвленные и трехмерные (пространственные) структуры.
Линейные ВМС могут иметь как кристаллическую, так и аморфную (стеклообразную) структуру. Разветвленные и трехмерные полимеры, как правило, являются аморфными. При нагревании они переходят в высокоэластическое состояние подобно каучуку, резине и другим эластомерам. При действии особо высоких температур, окислителей, кислот и щелочей органические и элементоорганические ВМС подвергаются постепенному разложению, образуя газообразные, жидкие и твердые (коксы) соединения.
Трехмерные структуры могут лишь временно деформироваться при растяжении, если они имеют сравнительно редкую сетку (подобно резине), а при наличии густой пространственной сетки они бывают упругими или хрупкими в зависимости от строения.
Изучение ВМС началось лишь в XIX в., а принципы их строения были установлены в 20-30-х. гг. XX в. В 1920 г. Немецкий ученый Г. Штаудингер, основываясь на теории химического строения органических веществ, высказал гипотезу о "макромолекулярном" строении полимеров и связал с этим их физико-химические свойства. В дальнейшем разработка этой гипотезы привела к созданию теории строения макромолекул.
Развитию теории строения полимеров способствовали труды С.В.Лебедева, П.П.Шорыгина, С.С.Медведева, В.А.Каргина, В.В.Коршака, У.Карозерса, П.Флори, Г.Марка и многих других ученых разных стран.
Полимерные материалы делят на три основные группы: пластические массы, каучуки, химические волокна. Они широко применяются во многих областях человеческой деятельности, удовлетворяя потребности различных отраслей промышленности, сельского хозяйства, медицины, культуры и быта.
Наука о полимерах
Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х гг. XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.
Классификация полимеров
По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, фенолоформальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов; цепи с разветвлением, трехмерной сетки. Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами.
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.
В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевиноформальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.
Свойства полимеров
Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высоко-эластичным деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высоко-эластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики.
Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.
Особые механические свойства:
эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).
Особенности растворов полимеров:
высокая вязкость раствора при малой концентрации полимера;
растворение полимера происходит через стадию набухания.
Особые химические свойства:
способность резко изменять свои физико-механические свойства под действием малых количеств реагента.
Изготовление полимеров
Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или непрочные гетероциклические группировки.
Применение полимеров
В начале нашего столетия химики синтезировали особую группу высокомолекулярных соединений и полимеров. Обладая высокой степенью химической инертности, они сразу же привлекли внимание многочисленных исследователей и хирургов. Так химия пришла на помощь современной восстановительной хирургии.
Медицинская хирургия всегда требует новые материалы. Некоторые синтетические материалы, например, нейлон, капрон, лавсан, дакрон, тефлон и другие, начали внедрять в медицинскую практику по причине их кажущихся на первый взгляд положительных качеств, прежде всего доступности, легкости изготовления, прочности, простоты стерилизации, относительной биологической инертности.
Классическое понятие "биологическое лучше искусственного" подвергли сомнению из-за чрезмерного увлечения полимерными материалами.
Началом применения полимерных материалов в медицине следует считать 1788 год, когда во время операции А. Шумлянский прибег к каучуку. Затем в 1895 году был использован целлулоид для закрытия костных дефектов после операций на черепе. В 1939 году совместные усилия стоматологов и химиков (И. Ревзина, Г. Петрова, И. Езриелева и др.) привели к созданию полимера АКР-7 для изготовления челюстных и зубных протезов. Вскоре появился ряд пластмасс из акриловых смол, оказавшихся пригодными для глазных протезов и восстановительных операций в челюстно-лицевой хирургии. В 1943 году С. Федоровым из полиметилметакрилата впервые сделана заплата для закрытия дефекта черепа. В настоящее время этот материал широко применяется у нас в стране и за рубежом. Из него изготовляют трубки для дренирования слезного мешка, гайморовой полости, протезы кровеносных сосудов, клапанов сердца, пищевода, желудка, мочевого пузыря, желчных протоков, уретры, хрусталика глаза; штифты и пластинки для фиксации костей при переломах, полимерные сетчатые «каркасы» для соединения кишок, сухожилий, трахеи.
В настоящее время из полимеров изготавливается более трех тысяч различных видов медицинских изделий. Вполне понятно, что дальнейшие успехи в этой области зависят от кооперирования и творческого содружества между химиками и медиками. Химическая промышленность выпускает различные полимеры с точным соблюдением тех требований, которые к ним предъявляют. Однако специальных полимеров для применения в медицине выпускается пока еще мало. Первостепенной задачей является разработка технических условий на «медицински чистые» полимеры, которые не оказывали бы вредного действия на организм человека.
С накоплением опыта применения синтетических материалов появился обоснованный скептицизм. Более того, сложные проблемы восстановительной хирургии не решались окончательно.
Инертные полимеры в живом организме оставались, к большому сожалению, инородным телом, они меняли свои физические свойства, поддерживали хроническую воспалительную реакцию; длительность функционирования протезов из полимеров приносила вред живому организму, в научной медицинской литературе появились сведения о канцерогенной опасности полимеров. Поэтому стали уделять больше внимания рассасывающимся материалам, которые в процессе регенерации постепенно замещались собственными тканями живого организма.
Весьма перспективен в этом отношении природный коллаген гидробионтов и наземных животных, сочетающий только положительные качества синтетических полимеров и тканевых трансплантатов.
Коллаген
полимер медицинский химический здоровье
Явным достоинством коллагена и полученных на его основе коллагеновых материалов для медицины является отсутствие токсических и канцерогенных свойств, слабая антигенность, высокая механическая прочность и устойчивость к тканевым ферментам, регулируемая скорость лизиса в организме, способность образовывать комплексы с биологически активными веществами, стимуляция регенерации собственных тканей организма.
Появление продуктов растворения коллагена (ПРК) расширило возможности широкого применения коллагена в различных областях медицины.
Из ПРК можно получить коллагеновые пленки, губки, нити, трубки и др. Коллагеновыми материалами лечат раны, ожоги, трофические язвы, пульпиты, их используют для пластики сосудов, клапанов, трахеи, закрытия дефектов кожи ожоговой или травматической этиологии, дефектов кости, твердой мозговой оболочки, роговицы, барабанной перепонки, печени и селезенки, а также в качестве шовного рассасывающегося материала и гемостатических средств и тампонов для заполнения костных полостей и т.д.
Коллаген является растворимым полимером и подвергается в живом организме резорбции, сроки которой можно регулировать в широких пределах. Коллаген может широко использоваться в сочетаниях с различными лекарствами. Он вступает в связи с различными веществами - гепарином, хондритинсульфатом, тромбином, антибиотиками, антисептиками, витаминами, гормонами и другими.
В реконструктивной хирургии появилось новое направление, названное коллагенопластикой. В последние годы получены новые коллагеновые материалы: покрытие раневое "Коллахит-III" и "Kоллахит-ФА", гелевин — коллагеновая антимикробная повязка "Дигиспон" и другие.
Потребность в коллагеновых материалах в медицине весьма высока.
Многие коллагеновые материалы получают в промышленности и в научных лабораториях методом сублимационной сушки.
Органолептические показатели пористых коллагеновых материалов высокие, они представляют собой пластины белого цвета различной толщины в проделах 6-12 мм; по мягкости и эластичности пластины из коллагена морских млекопитающих превосходят пластины из коллагена наземных животных.
По содержанию азотистых веществ и липидов коллагеновые материалы, полученные из китов и наземных животных, почти идентичны.
Интерес представляет аминокислотный состав пористых коллагеновых материалов. Содержание таких аминокислот, как глицин, пролин и оксипролин, характерных для коллагена и имеющих большое значение для его структурной стабильности, изменяется весьма незначительно по сравнению с исходным коллагенсодержащим сырьем.
Количественный аминокислотный состав подтверждает большую ценность биологических коллагеновых материалов по сравнению с полимерными материалами.
Коллагеновые пористые материалы содержат в основном те же химические элементы, что и исходное коллагенсодержащее сырье; количественно определены K, Na, Ca, Fe, Zn, Al, Cu, Mn, Ag, Co, Ni, Sn, V, Pb, Cr, Bi, Mo, Mg; количественно определен такой важный химический элемент, как йод (I). Химические элементы, макро- и микроэлементы весьма важны для жизнедеятельности любого живого организма. Каждый из химических элементов выполняет в живом организме определенную биологическую функцию.
Организм человека содержит примерно 60% воды, 34% составляют органические вещества и только...

Похожие материалы:

Реферат: Гигиена применения полимерных материалов

Реферат: Использование грибов в медицине

Реферат: ИСПОЛЬЗОВАНИЕ УЛЬТРАЗВУКА В МЕДИЦИНЕ

Реферат: Деонтология. Крылатые выражения и афоризмы, используемые в медицине

Курсовая работа: Использование сюжетно-ролевых игр в процессе гендерного воспитания младших дошкольников