Реферат: Приборы радиационной и химической разведки

Дозиметрические приборы предназначены для определения уровней радиации на местности, степени заражения одежды, кожных покровов человека, продуктов питания, воды, фуража, транспорта и других различных предметов и объектов, а также для измерения доз радиоактивного облучения людей при их нахождении на объектах и участках, зараженных радиоактивными веществами.

Дата добавления на сайт: 10 октября 2024


Скачать работу 'Приборы радиационной и химической разведки':


ЛИТЕРАТУРА

1. Безопасность жизнедеятельности / Под ред. С.В. Белова – М.: Высшая школа, 1999. – 448 c.
2. Атаманюк В. Г. и др. Гражданская оборона: Учебник для вузов. - М.: Высш. шк., 1986. - 207 с.
3. Руденко А. П. и др. Учебно-методическое пособие для проведения занятий по гражданской обороне с населением, не занятым в сфере производства. - М.: Энергоатомиздат, 1988. - 192 с.
Гражданская оборона / Под ред. Е.П. Шубина - М.: Про -
свещение, 1991. - 223 с.
5. Егоров П.Т. и др. Гражданская оборона: Учебник для вузов.- М.: Высшая школа.,1977. – 303 с.
6. Семенов С.Н. и др. Проведение занятий по гражданской обороне: Методическое пособие. - М.: Высшая школа, 1990. - 96 с.
7. Русак О.Н. , Малаян К.Р. , Занько Н.Г. Безопасность жизнедеятельности: Учебное пособие для вузов. – СПб.: Лань,
2000. – 448 с.
8.КукинП.П., Лапин В.Л. и др. Безопасность жизнедеятельности: Учебное пособие для вузов. – М.: Высшая школа, 2002. -319 с.
СОДЕРЖАНИЕ
1.1 Приборы радиационной разведки
1.2 Приборы химической разведки


Тема 8: ПРИБОРЫ РАДИАЦИОННОЙ И ХИМИЧЕСКОЙ РАЗВЕДКИ
1.1 ПРИБОРЫ РАДИАЦИОННОЙ РАЗВЕДКИ
Дозиметрические приборы предназначены для определения уровней радиации на местности, степени заражения одежды, кожных покровов человека, продуктов питания, воды, фуража, транспорта и других различных предметов и объектов, а также для измерения доз радиоактивного облучения людей при их нахождении на объектах и участках, зараженных радиоактивными веществами.
В соответствии с назначением дозиметрические приборы можно подразделить на приборы: радиационной разведки местности, для контроля степени заражения и для контроля облучения.
В группу приборов для радиационной разведки местности входят индикаторы радиоактивности (ДП-63-А) и рентгенометры - (ДП-2, ДП-3Б); в группу приборов для контроля степени заражения входят радиометры-рентгенометры (ДП-5А, ДП-5Б), а в группу приборов для контроля облучения – дозиметры (комплекты индивидуальных дозиметров ДП-22В, ДП-24).

1.1.1 Виды ионизирующих излучений

Альфа–излучение представляет собой поток ядер атомов гелия, называемых альфа-частицами и обладающих высокой ионизирующей способностью. Однако проникающая способность их очень низка. Длина пробега альфа-частицы в воздухе составляет всего несколько сантиметров (не более 10 см), а в твердых и жидких веществах еще меньше. Обыкновенная одежда и средства индивидуальной защиты полностью задерживают альфа-частицы и обеспечивают защиту человека. Но альфа-частицы крайне опасны при попадании в организм, что может привести к внутреннему облучению.
Бета – излучение – это поток быстрых электронов, называемых бета-частицами, возникающими при бета-распаде радиоактивных веществ. Бета-излучение имеет меньшую ионизирующую способность, чем альфа–излучение, но большую проникающую способность. Одежда уже не может полностью защитить, нужно использовать любое укрытие. Это будет намного надежнее.
Гамма-излучение имеет внутриядерное происхождение и представляет собой электромагнитное излучение, распространяющееся со скоростью света. Оно обладает очень высокой проникающей способностью и может проникать через толщу различных материалов. Гамма-излучение представляет основную опасность для жизни людей, ионизируя клетки организма. Защиту от него могут обеспечить только убежища, противорадиационные укрытия, надежные подвалы и погреба.
Нейтроны образуются в зоне ядерного взрыва в результате цепной реакции деления тяжелых ядер урана-235 или плутония-239 и являются электрически нейтральными частицами. Под воздействием нейтронов находящиеся в почве атомы кремния, натрия, магния и других становятся радиоактивными (наведенная радиация) и начинают излучать бета и гамма-лучи.
1.1.2 Методы обнаружения ионизирующих излучений
Обнаружение ионизирующих излучений основывается на их способности ионизировать и возбуждать атомы и молекулы среды, в которой они распространяются. Такие процессы изменяют физико–химические свойства облучаемой среды, которые могут быть обнаружены и измерены.
К таким изменениям среды относятся:
- изменение электропроводности веществ (газов, жидкостей, твердых материалов);
- люминесценция (свечение) некоторых веществ; засвечивание фотопленок;
- изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др.
Взяв за основу эти явления, для регистрации и измерения ионизирующих излучений используют фотографический, химический, сцинтилляционный и ионизационный методы.
1.1.2.1 Фотографический метод
Фотографический метод основан на измерении степени почернения фотоэмульсии под воздействием радиоактивных излучений. Гамма–лучи, воздействуя на молекулы бромистого серебра, содержащегося в фотоэмульсии, выбивают из них электроны связи. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при ее проявлении.
Сравнивая почернение пленки с эталоном, можно определить полученную пленкой дозу облучения, так как интенсивность почернения пропорциональна дозе облучения.

1.1.2.2 Химический метод
Химический метод основан на определении изменений цвета некоторых химических веществ под воздействием радиоактивных излучений. Так, например, хлороформ при облучении распадается с образованием соляной кислоты, которая, накопившись в определенном количестве, воздействует на индикатор, добавленный к хлороформу. Интенсивность окрашивания индикатора зависит от количества соляной кислоты, образовавшейся под воздействием радиоактивного излучения, а количество ее пропорционально дозе радиоактивного облучения. Сравнивая окраску раствора с имеющимися эталонами, можно определить дозу радиоактивных излучений, воздействовавших на раствор. На этом методе основан принцип работы химического дозиметра ДП–70 МП.
1.1.2.3 Сцинтилляционный метод
Сцинтилляционный метод основан на том, что под воздействием радиоактивных излучений некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) испускают фотоны видимого света. Возникшие при этом вспышки света (сцинтилляции) могут быть зарегистрированы. Количество вспышек пропорционально интенсивности излучения.
1.1.2.4 Ионизационный метод
Ионизационный метод основан на том, что под воздействием радиоактивных излучений в изолированном объеме происходит ионизация газов. При этом нейтральные молекулы и атомы газа разделяются на пары: положительные ионы и электроны. Если в облучаемом объеме создать электрическое поле, то под воздействием сил электрического поля электроны, имеющие отрицательный заряд, будут перемещаться к аноду, а положительно заряженные ионы – к катоду, т.е. между электродами будет проходить электрический ток, называемый ионизационным током. Чем больше интенсивность, а следовательно, и ионизирующая способность радиоактивных излучений, тем выше сила ионизационного тока. Это дает возможность, измеряя силу ионизационного тока, определять интенсивность радиоактивных излучений. Данный метод является основным и его используют почти во всех дозиметрических приборах.
1.1.3 Единицы измерения радиоактивности и
ионизирующих излучений

1.1.3.1 Единицы радиоактивности
В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин – «один распад в секунду» (расп /с). В системе СИ эта единица получила название «беккерель» (Бк). В практике радиационного контроля широко используется внесистемная единица активности – «кюри» (Ки). Один кюри – это 3,7х1010 распадов в секунду.
Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы.
1.1.3.1 Единицы ионизирующих излучений
Для измерения величин, характеризующих ионизирующее излучение, исторически появилась единица «рентген». Эта единица определяется как доза рентгеновского или гамма–излучения в воздухе, при которой сопряженная корпускулярная эмиссия на 0, 001293 г воздуха производит в воздухе ионы, несущие заряд в 1 эл.-ст. ед. ионов каждого знака. (Здесь 0,001293 г - масса 1 см3 атмосферного воздуха при 00 С и давлении 760 мм рт. ст.).

Экспозиционная доза – мера ионизационного действия рентгеновского или гамма-излучений, определяемая по ионизации воздуха.
В СИ единицей экспозиционной дозы является «один кулон на килограмм» (Кл/кг). Внесистемной единицей является «рентген» (Р),
1 Р = 2,58 х 10-4 Кл/кг. В свою очередь 1 Кл/кг = 3,88х103 Р.
Мощность экспозиционной дозы – приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ – «ампер на килограмм» (А/кг). Однако в большинстве случаев на практике пользуются внесистемной единицей «рентген в секунду» (Р/с) или «рентген в час» (Р/ч).
Поглощенная доза – энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. Чем продолжительнее время облучения, тем больше поглощенная доза. При одинаковых условиях облучения доза зависит от состава вещества.
В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица «грей» (Гр). 1 грей – это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно, 1 Гр = 1 Дж/кг.
Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия.
Мощность поглощенной дозы – это приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ – «грей в секунду» (Гр/с). Это такая мощность поглощенной дозы облучения, при которой за 1 с в веществе создается доза облучения 1 Гр.
На практике для оценки поглощенной дозы широко используют внесистемную единицу мощности поглощенной дозы «рад в час» (рад/ч) или «рад в секунду» (рад/с).
Эквивалентная доза – это понятие, введенное для количественного учета неблагоприятного биологического воздействия различных видов ионизирующих излучений. Определяется она по формуле: Дэкв = Q . Д, где Д – поглощенная доза данного вида излучения, Q – коэффициент качества излучения, который составляет для рентгеновского, гамма- и бета–излучений – 1, для нейтронов с энергией от 0,1 до 10 мэв – 10, для альфа–излучения с энергией менее 10 Мэв – 20. Из приведенных данных видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают соответственно в 10 и 20 раз больший поражающий эффект. В системе СИ эквивалентная доза измеряется в «зивертах» (Зв).
Бэр (биологический эквивалент рентгена) – это внесистемная единица эквивалентной дозы. Бэр – такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма–излучения. Поскольку коэффициент качества гамма–излучения равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении 1 Зв = 1 Гр; 1 бэр = 1 рад;
1 рад = 1 Р.
Мощность эквивалентной дозы – отношение приращения эквивалентной дозы за единицу времени и выражается в «зивертах в секунду» (Зв/с). Поскольку время пребывания человека в поле облучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в «микрозивертах в час» (мкЗв/ч).
Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения – при дозах выше 0,5 Зв (бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь.
Основные дозиметрические величины и единицы их измерения представлены в таблице 1.
Таблица 1 - Дозиметрические величины и единицы их измерения
Величина Единица в СИ Внесистемная единица Примечания
Активность Беккерель (Бк) Кюри (Ки) 1 Бк = 1 расп/с
Поглощенная доза Грей (Гр) рад 1 Гр = 100 рад
1 рад =10-2Дж/кг = 10-2 Гр
Мощность
поглощенной
дозы Гр/с рад/с 1 Гр/с = =100рад/с
Эквивалентная доза Зиверт (Зв) бэр
(биологический эквивалент рентгена)
1 Зв = 1 Гр
1 Зв = 100 бэр =
= 100 р
1 бэр = 10-2 Зв
Экспозиционная доза Кл/кг (кулон на килограмм) Рентген (Р) 1 Р = 2,58х10-4 Кл/кг
1 Кл/кг = =3,88х103 Р
Мощность экспозиционной дозы А/кг (ампер на килограмм) Рентген в секунду
(Р/с) 1 Р/с = 2,58х10-4
А/кг
1 А/кг =
= 3,88х103 Р/с
1.1.4 Измеритель мощности экспозиционной дозы
излучения ДП-5Б
Измеритель мощности экспозиционной дозы излучения ДП – 5Б предназначен для измерения уровней радиации на местности и радиоактивной зараженности различных предметов по гамма– излучению. Мощность гамма–излучения определяется в миллирентгенах или в рентгенах в час для той точки пространства, в которой помещен при измерениях счетчик прибора. Кроме того, имеется возможность обнаружения бета–излучения.
Диапазон измерений прибора по гамма-излучению – от 0,05 мР/ ч до 200 Р/ч. Он разбит на шесть поддиапазонов (таблица 2).
Таблица 2 – Диапазон измерений прибора ДП-5Б по гамма-излучению
Поддиапазон Положение переключателя Шкала прибора Единица измерения Пределы измерений
I 200 0…200 Р/ч 5…200
II х 1000 0…5 мР/ч 500…5000
III х 100 0…5 мР/ч 50…500
IV х 10 0…5 мР/ч 5…50
V х 1 0…5 мР/ч 0,5…5
VI х 0,1 0…5 мР/ч 0,05…0,5
Отсчет показаний прибора производится по нижней шкале микроамперметра в Р/ч, по верхней шкале – в мР/ч с последующим умножением на соответствующий коэффициент поддиапазона.
Измерения гамма-излучений прибором можно производить в интервале температур воздуха от минус 40 до плюс 500 С, погрешность измерений в этом интервале температур не превышает 0,35…0,7 %
на 10 С.
Питание прибора осуществляется от двух элементов типа 1,6 ПМЦ-Х-1,05 (КБ-1), обеспечивающих непрерывную работу в нормальных условиях в течение 40 ч.
Для работы в темноте шкала прибора подсвечивается двумя лампочками, которые питаются от одного элемента типа 1,6 ПМЦ-Х-1,05 (КБ-1).
Масса прибора 2,1 кг.
Прибор имеет звуковую индикацию на всех поддиапазонах, кроме первого. Звуковая индикация прослушивается с помощью головных телефонов.
1.1.4.1 Устройство прибора ДП-5Б
Общий вид измерителя мощности экспозиционной дозы ДП-5Б представлен на рисунке 1.
1 – панель измерительного пульта; 2 - кнопка сброса показаний; 3 – потенциометр регулировки режима работы; 4 – микроамперметр; 5 – радиоактивный источник бета-излучения; 6 – тумблер подсвета шкалы; 7 – переключатель поддиапазонов; 8 – стальной корпус для индикации бета-излучения; 9, 10 – выступы для фиксации экрана; 11 – поворотный экран; 12 – ручка для присоединения удлинительной штанги; 13 – футляр; 14 – окно для наблюдения показаний прибора; 15 – корректор стрелки на нуль
Рисунок 1 – Измеритель мощности экспозиционной дозы излучения ДП-5Б

На панели измерительного пульта 1 размещается: кнопка сброса показаний 2; потенциометр регулировки режима 3, микроамперметр 4; тумблер подсвета шкалы 6; переключатель поддиапазонов 7, гнездо включения телефона.
Зонд герметичен и имеет цилиндрическую форму. В нем размещены: монтажная плата, газоразрядные счетчики, усилитель и другие элементы схемы. На плату надевается стальной корпус 8 с окном для индикации бета-излучения. Окно заклеено этилцеллюлозной водостойкой пленкой. Зонд имеет поворотный экран 11, который фиксируется в двух положениях: «Б» и «Г». На корпусе зонда есть два выступа 9, 10, которыми он ставится на обследуемую поверхность при индикации бета-зараженности.
Для удобства работы при измерениях зонд имеет ручку 12, к которой присоединяется удлинительная штанга.
Телефон состоит их двух малогабаритных телефонов типа ТГ-7М и оголовья из мягкого материала. Он подключается к пульту для звуковой индикации.
Прибор носится в футляре 13 из искусственной кожи. Он состоит из двух отсеков – для пульта и для зонда. В крышке футляра имеется окно 14 для наблюдения за показаниями прибора. С внутренней стороны на крышке изложены правила пользования прибором, таблица допустимых величин зараженности и прикреплен контрольный радиоактивный источник для проверки работоспособности прибора. Контрольный источник закрыт защитной пластинкой 5, которая должна открываться только при проверке работоспособности прибора.

1.1.4.2 Радиационная разведка местности
Заражение местности радиоактивными веществами измеряется в рентген-часах (Р/ч) и характеризуется уровнем радиации.
Уровень радиации показывает дозу облучения, которую может получить человек в единицу времени (ч) на зараженной местности. Местность считается зараженной при уровне радиации 0,5 Р/ч и выше.
При радиационной разведке уровни радиации на местности измеряются на I поддиапазоне «200» в пределах от 5 до 200 Р/ч, а до 5 Р/ч – на II поддиапазоне «х 1000». При измерении прибор подвешивают на шею на высоте 0,7…1 м от поверхности земли. Зонд прибора при измерении уровней радиации должен быть в футляре, а экран его установлен в положение «Г». Переключатель поддиапазонов переводят в положение «200» и снимают показания по нижней шкале микроамперметра (0…200 Р/ч).
При показаниях прибора меньше 5 Р/ч переключатель поддиапазонов переводят в положение «х1000» и снимают показания по верхней шкале (0…5 мР/ч). Зонд прибора так же, как и при первом измерении, должен быть уложен в футляр.
1.1.4.3 Контроль радиоактивного заражения
Контролю радиоактивного заражения подвергаются кожные покровы людей, их одежда, сельскохозяйственные животные, различные предметы, техника, транспорт, продовольствие, вода и т.п. О степени заражения радиоактивными веществами поверхности контролируемых объектов принято судить по величине мощности дозы (уровня радиации) гамма-излучения вблизи зараженных поверхностей, определяемой в миллирентгенах в час (мР/ч).
Измерения проводятся для того, чтобы в случае заражения радиоактивными веществами определить, какими предметами и продуктами можно пользоваться, не подвергаясь опасности поражения.
В таблице 3 приведены предельно допустимые величины заражения различных контролируемых объектов.
Таблица 3 - Допустимые нормы зараженности
Наименование объекта Мощность дозы гамма-излучения,
мР/ч
Поверхность тела человека
Нательное белье
Лицевая часть противогаза
Одежда, обувь, средства индиви-
дуальной защиты
Поверхность тела животного
Техника
Защитные сооружения:
внутренние поверхности
наружные поверхности 20
20
10
30
50
200
100
500
Контроль степени радиоактивного заражения проводится в следующей последовательности:
- измеряется гамма–фон в месте, где будет определяться степень заражения объекта, не менее 15…20 м от обследуемого объекта;
- подносят зонд (экран зонда в положении «Г») к поверхности объекта на расстояние 1,5…2 см и медленно перемещают над поверхностью объекта;
- из максимальной мощности экспозиционной дозы, измеренной на поверхности объекта, вычитают гамма–фон.
Полученный результат будет характеризовать степень радиоактивного заражения объекта.
Для обнаружения бета-излучений необходимо:
- установить экран зонда в положении «Б»;
- поднести к обследуемой поверхности на...

Похожие материалы:

Тестовые задания: Тесты по радиационной гигиене