Реферат: Антибактериальные препараты и формирование у бактерий резистентности к ним

«Действуя на микробы, следует помнить об их собственных интересах», — говорил И. П. Павлов, пытаясь умерить восторги коллег по поводу успешного применения «красного стрептоцида», родоначальника сульфаниламидов. И оказался прав. Бактерии, действительно, стали отстаивать свои интересы в борьбе с антибактериальными препаратами в целом и с антибиотиками в частности. Да так рьяно, что за каких-то пару десятилетий антибиотикорезистентность стала проблемой глобального масштаба.

Дата добавления на сайт: 21 мая 2024


Скачать работу 'Антибактериальные препараты и формирование у бактерий резистентности к ним':


«Действуя на микробы, следует помнить об их собственных интересах», — говорил И. П. Павлов, пытаясь умерить восторги коллег по поводу успешного применения «красного стрептоцида», родоначальника сульфаниламидов. И оказался прав. Бактерии, действительно, стали отстаивать свои интересы в борьбе с антибактериальными препаратами в целом и с антибиотиками в частности. Да так рьяно, что за каких-то пару десятилетий антибиотикорезистентность стала проблемой глобального масштаба.
Этиотропность антимикробных препаратов
Антибиотики. В настоящее время антибиотики прочно заняли место в группе препаратов, обладающих этиотропным действием и влияющих бактериостатически или бактерицидно на возбудителей инфекций. Этиотропность антибиотикотерапии, выбор и назначение препарата с учетом свойств выделенного возбудителя являются основным принципом, которого необходимо придерживаться, особенно в связи с широким распространением устойчивых форм возбудителей. Имеющиеся антибиотические препараты по своей химической структуре относятся к различным соединениям и обладают отличающимся механизмом действия на микроорганизмы. Этиотропная терапия предполагает целенаправленное применение антимикробных препаратов против установленного возбудителя инфекции и является по своей сути более совершенной и наиболее предпочтительной. Обладать этиотропностью, т. е. подавлять жизнедеятельность и развитие возбудителя болезни или опухолевых клеток либо уничтожать его в тканях и средах организма.
Требования, предъявляемые к антибактериальным препаратам
Одним из крупнейших достижений медицины второй половины XX века является широкое использование антибиотикотерапии. Антибиотикотерапия — это лечение инфекционных заболеваний химическими препаратами, не являющимися продуктами реакции организма и возбудителя. К препаратам применяемым в антибиотикотерапии предъявляют ряд требований.
Антибактериальный препарат должен обладать:
• этиотропностью, т. е. подавлять жизнедеятельность и развитие возбудителя болезни, или уничтожать его в тканях и средах организма. Вся антибиотикотерапия в целом всегда является этиотропной, т. е. направленной на причину заболевания – микроорганизм-возбудитель заболевания ;
• следующее требование – антибактериальные препараты должны достаточно хорошо растворяться в воде, так как только в таком виде они могут быть доставлены во внутреннюю среду организма. Для того чтобы соответствовать именно этому условию, для антибиотикотерапии довольно часто используются соответствующие производные основного действующего вещества. Малорастворимые или нерастворимые вещества пригодны только для местного применения;
• антибактериальные препараты, с одной стороны, должны быть достаточно стабильны во внутренней среде организма, но, с другой стороны, они не должны иметь кумулятивного эффекта (способности накапливаться в макроорганизме);
• вещества, используемые для антибиотикотерапии, должны быть безвредны.
Несмотря на то, что любой химиотерапевтический препарат обладает тем или иным побочным действием на организм человека, это действие должно быть по возможности минимальным, а тератогенный (способность вызывать образование отклонений в развитии) и мутагенный (способность вызывать мутации) эффекты по возможности отсутствовать. Это требование к качеству антибактериальных препаратов (безвредность) оценивается химиотерапевтическим индексом, который представляет собой отношение минимальной терапевтической дозы препарата к максимально переносимой. Очевидно, что, чем меньше химиотерапевтический индекс, тем лучше препарат; если же индекс больше или равен 1, то такое вещество не может быть использовано как средство химиотерапии.
Классификация химиотерапевтических средств
В основу классификации химиотерапевтических препаратов положены разные принципы.
По направленности действия все химиопрепараты делятся на:
• противопротозойные – метронидазол (флагил, трихопол), орнидазол (тиберал), пентамидин (пентам), пириметамин;
• противовирусные – азидомитидин, фоскарнет (фоскавир), ганцикловир (цитовен), амантадин, римантадин (ремантадин), ацикловир (зовиракс), рибавирин (виразол, виразид) и другие;
• противогрибковые – полиены – амфотерицин В (фунгилин), нистатин (микостатин), леворин, натамицин (пимофуцин); азолы – клотримазол (кандид), бифоназол (микоспор), миконазол (монистат), интраконазол (оругал, споранокс), флуконазол (дифлюкан), кетоконазол (низорал, ороназол) и другие – флуцитозин, тербинафин, гризеофульвин и другие;
• антибактериальные.
Среди антибактериальных препаратов в клинической практике всегда отдельно выделяются противотуберкулезные (антимикобактериальные) и противосифилитические средства, что связано с особенностями возбудителей этих заболеваний.
По способности накапливаться в тех или иных тканях, т. е. по фармакокинетике, клиницисты и фармакологи среди химиотерапевтических веществ выделяют цитостатики (накапливаются в опухолевых клетках и подавляют их рост), уросептики (накапливаются в моче и подавляют развитие возбудителей инфекций почек и мочевыводящих путей) и другие.
По химическому строению выделяют несколько групп химиотерапевтических препаратов.
1. Производные мышьяка, сурьмы и висмута
Производные мышьяка, сурьмы и висмута – это группа химиотерапевтических веществ – производных соответствующих соединений. В настоящее время они практически не используются, хотя эта группа по-прежнему вполне может успешно применяться для местной терапии многих заболеваний.
Эти соединения были первыми препаратами для этиотропной терапии и применялись для лечения паразитарных инфекций (сонная болезнь) и сифилиса.
2. Сульфаниламиды
Сульфаниламиды – к этой группе относятся многочисленные производные сульфаниловой кислоты. Они были открыты и используются с 30-х годов XX века, но и к настоящему времени многие из них достаточно эффективны:
• сульфаметоксазол (гантанол),
• сульфаметизол (руфол),
• сульфацетамид (альбуцид),
• сульфадиметоксин (препарат пролонгированного действия) и другие.
Механизм их действия состоит в том, что они являются структурными аналогами парааминобензойной кислоты и нарушают синтез фолиевой кислоты, а через него – синтез ДНК, т. е. являются микробными антиметаболитами (будучи близки по структуре, заменяют то или иное соединение, принимающее участие в микробном метаболизме).
3. Диаминопиримидины
Диаминопиримидины – препараты этой группы также являются антиметаболитами. Но поскольку они подменяют пиримидиновые основания, то и спектр их действия шире, чем у сульфаниламидов. К ним относятся:
• триметоприм,
• пириметамин (антипротозойный препарат),
• тетроксоприм.
4. Нитрофурановые препараты
Нитрофурановые препараты – это производные пятичленного гетероциклического соединения – фурана. К ним относятся:
• фурациллин,
• фурагин,
• фуразолидон,
• нитрофурантоин (фурадонин),
• нитрофаразон,
• солафур и другие.
Механизм их действия состоит в одновременной блокаде нескольких ферментных систем микробной клетки.
5. Хинолоны
Хинолоны – это группа химиотерапевтических веществ, полученных на основе:
• собственно хинолонов (препараты группы налидиксовой кислоты):
– налидиксовая кислота(неграм, невиграмон),
– циноксацин (цинобак);
• производных хинолонов:
– 4-аминохинолон (оксолипиевая кислота),
– 8-аминохинолон (нитроксолин– 5-НОК);
• и фторхинолонов:
– офлоксацин (заноцин, таривид),
– норфлоксацин (норбактин),
– ципрофлоксацин (цифран, ципробай, ципролет),
– ломефлоксацин (максаквин).
Механизм действия хинолонов состоит в нарушении различных этапов (репликации, дупликации, транскрипции, репарации) синтеза ДНК микробной клетки. Несмотря на казалось бы универсальный механизм действия на микробную клетку, фторхинолоны не оказывают влияния на анаэробные бактерии, а налидиксовая кислота активна только в отношении грамотрицательных микроорганизмов (исключая род псевдомонад), что отражено в коммерческом названии одного из препаратов – неграм.
6. Азолы
Азолы – это группа различных производных имидазола:
• клотримазол (канестен, кандид),
• миконазол (монистат),
• кетоконазол (низорал),
• эконазол (экостатин),
и других азолов, к которым относятся:
• бифиназол (микоспор),
• инраконазол (оругал, споранокс),
• флуконазол (дифлюкан).
Все препараты этой группы обладают антимикотической активностью. Один из механизмов их действия состоит в ингибировании биосинтеза стеролов, что приводит к повреждению наружной клеточной мембраны грибов и повышению ее проницаемости. Другой механизм их действия состоит в ингибировании синтеза триглицеридов, фосфолипидов, увеличению активности окисления и уменьшению активности ферментов, тормозящих образование свободных радикалов. Последнее ведет к внутриклеточному накоплению перекиси водорода и повреждению клеточных органелл. У дрожжеподобных грибов рода Candida азолы ингибируют трансформацию бластоспор в инвазивный мицелий.
7. Антибиотики
Антибиотики – это группа соединений природного происхождения или их полусинтетических и синтетических аналогов, обладающих антимикробным или противоопухолевым действием.
К настоящему времени известно несколько сотен подобных веществ, но лишь немногие из них нашли применение в медицине.
Основные классификации антибиотиков
В основу классификации антибиотиков также положено несколько разных принципов.
По способу получения их делят на:
• природные;
• синтетические;
• полусинтетические (на начальном этапе получают естественным путем, затем синтез ведут искусственно).
Продуцентами большинства антибиотиков являются:
• актиномицеты,
• плесневые грибы;
но их можно получить и из:
• бактерий (полимиксины),
• высших растений (фитонциды)
• тканей животных и рыб (эритрин, эктерицид).
По направленности действия :
• антибактериальные;
• противогрибковые;
• противоопухолевые.
По спектру действия (числу видов микроорганизмов, на которые действуют антибиотики) они делятся на:
• препараты широкого спектра действия (цефалоспорины 3-го поколения, макролиды);
• препараты узкого спектра действия (циклосерин, линкомицин, бензилпенициллин, клиндамицин).
Заметим, что препараты узкого спектра в некоторых случаях могут быть предпочтительнее, так как не подавляют нормальную микрофлору.
2. Классификация по химическому строению
По химическому строению антибиотики делятся на:
• Бета-лактамные антибиотики – основу из молекулы составляет бета-лактамное кольцо. К ним относятся:
– пенициллины – это группа природных и полусинтетических антибиотиков, молекула которых содержит 6-аминопенициллановую кислоту, состоящую из двух колец – тиазолидонового и бета-лактамного. Среди них выделяют:
биосинтетические (пенициллин G – бензилпенициллин),
аминопенициллины (амоксициллин, ампициллин, бекампициллин),
полусинтетические «антистафилококковые» пенициллины (оксациллин, метициллин, клоксациллин, диклоксациллин, флуклоксациллин), основное преимущество которых – устойчивость к микробным бета-лактамазам, в первую очередь, стафилококковым;
– цефалоспорины — это природные и полусинтетические антибиотики, полученные на основе 7-аминоцефалоспориновой кислоты и содержащие цефемовое (также бета-лактамное) кольцо, т. е. по структуре они близки к пенициллинам. Они делятся на цефалоспорины:
1-го поколения: цепорин, цефалотин, цефалексин;
2-го поколения – цефазолин (кефзол), цефамезин, цефамандол (мандол);
3-го поколения – цефуроксим (кетоцеф), цефотаксим (клафоран), цефуроксим аксетил (зиннат), цефтриаксон (лонгацеф), цефтазидим (фортум);
4-го поколения – цефепим, цефпиром (цефром, кейтен) и другие.
– монобактамы – азтреонам (азактам, небактам);
– карбопенемы — меропенем (меронем) и имипинем. Причем имипинем применяют только в комбинации со специфическим ингибитором почечной дегидропептидазы циластатином – имипинем/циластатин (тиенам);
• Аминогликозиды – они содержат аминосахара, соединенные гликозидной связью с остальной частью (агликоновым фрагментом) молекулы. К ним относятся: стрептомицин, гентамицин (гарамицин), канамицин, неомицин, мономицин, сизомицин, тобрамицин (тобра) и полусинтетические аминогликозиды – спектиномицин, амикацин (амикин), нетилмицин (нетиллин);
• Тетрациклины – основу молекулы составляет полифункциональное гидронафтаценовое соединение с родовым название тетрациклин. Среди них имеются природные тетрациклины – тетрациклин, окситетрациклин (клинимицин) и полусинтетические тетрациклины – метациклин, хлортетрин, доксициклин (вибрамицин), миноциклин, ролитетрациклин;
• Макролиды – препараты этой группы содержат в своей молекуле макроциклическое лактоновое кольцо, связанное с одним или несколькими углеводными остатками. К ним относятся: эритромицин, олеандомицин, рокситромицин (рулид), азитромицин (сумамед), кларитромицин (клацид), спирамицин, диритромицин;
• Линкозамиды – к ним относятся: линкомицин и клиндамицин. Фармакологические и биологические свойства этих антибиотиков очень близки к макролидам, и, хотя в химическом отношении это совершенно иные препараты, некоторые медицинские источники и фармацевтические фирмы – производители химиопрепаратов, например, делацина С, относят линкозамины к группе макролидов;
• Гликопептиды – препараты этой группы в своей молекуле содержат замещенные пептидные соединения. К ним относятся: ванкомицин (ванкацин, диатрацин), тейкопланин (таргоцид), даптомицин;
• Полипептиды – препараты этой группы в своей молекуле содержат остатки полипептидных соединений, к ним относятся: грамицидин, полимиксины М и В, бацитрацин, колистин;
• Полиены – препараты этой группы в своей молекуле содержат несколько сопряженных двойных связей. К ним относятся: амфотерицин В, нистатин, леворин, натамицин;
• Антрациклинновые антибиотики – к ним относятся противоопухолевые антибиотики – доксорубицин, карминомицин, рубомицин, акларубицин.
Есть еще несколько достаточно широко используемых в настоящее время в практике антибиотиков, не относящихся ни к одной из перечисленных групп – фосфомицин, фузидиевая кислота (фузидин) рифампицин.
В основе антимикробного действия антибиотиков, как и других химиотерапевтических средств, лежит нарушение метаболизма микробных клеток.
Классификация по происхождению.
Антибиотики — это вещества природного происхождения, а химиопрепараты — это искусственно созданные вещества аналогичного действия, объединенные общим термином «антибактериальные препараты».
Антибиотики это вещества природного или полусинтетического происхождения. Получают антибиотики путем экстрагирования их из колоний грибков, бактерий, тканей растений или животных. В некоторых случаях исходную молекулу подвергают дополнительным химическим модификациям с целью улучшить определенные свойства антибиотика (полусинтетические антибиотики). На данный момент существует огромное число всевозможных антибиотиков. Правда, в медицине используется лишь немногие из них, другие, из-за повышенной токсичности, не могут быть использованы для лечения инфекционных болезней у людей. Чрезвычайное разнообразие антибиотиков послужило причиной создания классификации и разделения антибиотиков на группы. При этом внутри группы собраны антибиотики со схожей химической структурой (происходящие из одной и той же молекулы сырья) и действием.
История открытия антибиотиков
Открытие антибиотиков, без преувеличения, можно назвать одним из величайших достижений медицины прошлого века. Первооткрывателем антибиотиков является английский ученый Флеминг, который в 1929 году описал бактерицидное действие колоний грибка Пенициллина на колонии бактерий, разраставшихся по соседству с грибком. Как и многие другие великие открытия в медицине, открытие антибиотиков было сделано случайно. Оказывается, ученый Флеминг не очень любил чистоту, и потому нередко пробирки на полках в его лаборатории зарастали плесенью. Однажды после недолгого отсутствия Флеминг заметил, что разросшаяся колония плесневого грибка пенициллина полностью подавила рост соседней колонии бактерий (обе колонии росли в одной пробирке). Здесь нужно отдать должное гениальности великого ученого сумевшего заметить этот замечательный факт, который послужил основой предположения того, что грибы победили бактерий при помощи специального вещества безвредного для них самих и смертоносного для бактерий. Это вещество и есть природный антибиотик - химическое оружие микромира. Действительно, выработка антибиотиков является одним из наиболее совершенных методов соперничества между микроорганизмами в природе. В чистом виде вещество, о существовании, которого догадался Флеминг, было получено во время второй мировой войны. Это вещество получило название пенициллин (от названия вида грибка, из колоний которого был получен этот антибиотик). Во время войны это чудесное лекарство спасло тысячи больных обреченных на смерть от гнойных осложнений. Но это было лишь начало эры антибиотиков. После войны исследования в этой области продолжились, и последователи Флеминга открыли множество веществ со свойствами пенициллина. Оказалось, что кроме грибков вещества и подобными свойствами вырабатываются и некоторыми бактериями, растениями, животными. Параллельные исследования в области микробиологии, биохимии и фармакологии, наконец, привели к изобретению целого ряда антибиотиков пригодных для лечения самых разнообразных инфекций вызванных бактериями. При этом оказалось, что некоторые антибиотики могут быть использованы для лечения грибковых инфекций или для разрушения злокачественных опухолей. Термин «антибиотик» происходит от греческих слов anti, что означает против и bios - жизнь, и буквально переводится, как «лекарство против жизни». Несмотря на это антибиотики спасают, и будут спасать миллионы жизней людей.
Основные группы известных на сегодняшний день антибиотиков
Бета-лактамные антибиотики.Группа бета-лактамных антибиотиков включает две большие подгруппы известнейших антибиотиков: пенициллины и цефалоспорины, имеющих схожую химическую структуру.Группа пенициллинов. Пенициллины получаются из колоний плесневого грибка Penicillium, откуда и происходит название этой группы антибиотиков. Основное действие пенициллинов, связано с их способностью угнетать образование клеточной стенки бактерий и тем самым подавлять их рост и размножение. В период активного размножения многие виды бактерий очень чувствительны по отношению к пенициллину и потому действие пенициллинов бактерицидное.
Важным и полезным свойством пенициллинов является их способность проникать внутрь клеток нашего организма. Это свойство пенициллинов позволяет лечить инфекционные болезни, возбудитель которых «прячется» внутри клеток нашего организма (например, гонорея). Антибиотики из группы пенициллина обладают повышенной избирательностью и потому практически не влияют на организм...