Реферат: Свойства нервных центров

Цель данной работы - раскрыть классификацию свойств нервных центров, процессов торможения, показать сложность их функционирования и изучения; также раскрыть их роль в функционировании организма, изучить патологические нарушения высшей нервной деятельности, их признаки и причины.

Дата добавления на сайт: 15 ноября 2024


Скачать работу 'Свойства нервных центров':


Содержание
Введение
1. Свойства нервных центров. Торможение в ЦНС
1.1 Свойства нервных центров
1.2 Торможение в ЦНС
2. Патологические нарушения высшей нервной деятельности. Истерия. Неврастения. Психастения.
2.1 Высшая нервная деятельность
2.2 Патологические нарушения высшей нервной деятельности
2.3 Истерия
2.4 Неврастения
2.5 Психастения
Вывод
Литература
Введение
Цель данной работы - раскрыть классификацию свойств нервных центров, процессов торможения, показать сложность их функционирования и изучения; также раскрыть их роль в функционировании организма, изучить патологические нарушения высшей нервной деятельности, их признаки и причины.
Нервные центры – это совокупность нервных структур, участвующих в регуляции определенных функций организма. Это может быть как и четко очерченная анатомическая структура, так и объединение нейронов по функциональному признаку. Но все они обладают рядом специфических свойств. Обусловленных конструкцией нейронных сетей, структурой и свойствами синапсов.
Проявления функциональной патологии высшей нервной деятельности прежде всего касаются психических функций. Наблюдается ослабление аналитико-синтетической деятельности головного мозга, нарушение долгосрочной и краткосрочной памяти, регуляции эмоций и мотиваций, регуляции общего функционального состояния мозга, межполушарных отношений. Современные представления о механизмах патологии высшей нервной деятельности основываются на учете роли эмоций и памяти; а также гуморальных факторов возникновения патологии.
Знание свойств и патологических нарушений высшей нервной деятельности, помогает правильно осуществлять педагогические воздействия. А также вовремя замечать какие-либо поведенческие отклонения от нормы.
1. Свойства нервных центров. Торможение в ЦНС
1.1 Свойства нервных центров
Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров.
Нервный центр — совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функциональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. На смену старым теориям об узкой локализации, или эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существования четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структурах. Например, дыхательный центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.
Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований. Рассматриваемые ниже свойства нервных центров объясняются некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являются следующие.
1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям). Одностороннее проведение возбуждения характерно не только для химических синапсов, но и для большинства электрических.
2. Наличие синаптической задержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций — десятки миллисекунд.
3. Трансформация ритма возбуждения - это способность нервных центров изменять ритм приходящих на входы нейрона импульсных потоков. Различают несколько механизмов этого явления:
- урежение импульсации может быть связано с более низкой лабильностью нейрона приемника, обусловленной длительной фазой его следовой интерполяризации;
-увеличение импульсации объясняется длительной деполяризацией, достигающей критического уровня, что способствует генерации множественных потенциалов действия, а также с включением нейронов в реверберирующие / циркулирующие/ цепи возбуждения.
Аналогичные механизмы имеют место при рефлекторных ответах, в зависимости от силы и длительности раздражения. Увеличение этих параметров стимуляции с одной стороны приводит к включению большего числа нейронов / за счет присоединения к низкопороговым более высокопороговых нейронов/, с другой стороны – к возникновению суммационно-трансформационных преобразований на синаптических аппаратах центральных вставочных нейронов.
4. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Пространственная суммация связана с такой особенностью распространения возбуждения, как конвергенция. Временную суммацию также называют последовательной. Она играет важную физиологическую роль, потому что многие нейронные процессы имеют ритмический характер и, таким образом, могут суммироваться, давая начало надпороговому возбуждению в нейронных объединениях нервных центров. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.
5. Последействие – это продолжение возбуждения нервного центра после прекращения поступления к нему импульсов по афферентным нервным путям, причинами последействия являются:
длительное существование ВПСП, если ВПСП полисинаптический и высокоамплитудный; в этом случае при одном ВПСП возникает несколько ПД;
многократные появления следовой деполяризации, что свойственно нейронам ЦНС;
циркуляция возбуждения по замкнутым нейронным цепям.
Первые две причины действуют недолго – десятки или сотни миллисекунд, третья причина – циркуляция возбуждения – может продолжаться минуты и даже часы. Таким образом, особенность распространения возбуждения обеспечивает другое явление в ЦНС – последействие. Последнее играет важнейшую роль в процессах обучения – кратковременной памяти.
6. Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов — в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору. Физические рефлексы вызывают довольно быстрое утомление в нервных центрах, в то время как тонические рефлексы могут протекать, не сопровождаясь развитием утомления. Это позволяет в течение длительного времени поддерживать мышечный тонус, что, в свою очередь, через обратную афферентацию поддерживает тонус нервных центров и обеспечивает постоянную импульсацию к соответствующим периферическим эффектам.
7. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра. Тонус объясняется следующим:
- спонтанной активностью нейронов ЦНС;
- гуморальным влиянием циркулирующих в крови биологически активных веществ, влияющих на возбудимость нейронов;
- афферентной импульсацией от различных рефлексогенных зон;
- суммацией миниатюрных потенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах;
- циркуляцией возбуждения в ЦНС.
Значение фоновой активности нервных центров заключается в обеспечении некоторого исходного уровня деятельного состояния центра и эффекторов. Этот уровень может возрастать или снижаться в зависимости от колебаний суммарной активности нейронов нервного центра-регулятора.
8. Пластичность нервных центров – способность нервных элементов к перестройке функциональных свойств. Основные проявления этого свойства следующие: посттетаническая потенциация и депрессия, доминанта, образование временных связей, а в патологических случаях – частичная компенсация нарушенных функций.
Посттетаническая потенциация /синаптическое облегчение/ - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Кратковременная активация увеличивает амплитуду постсинаптических потенциалов. Облегчение наблюдается и во время раздражения / в начале/; в этом случае феномен называют тетанической потенциацией. Степень выраженности облегчения возрастает с увеличением частоты импульсов; облегчение максимально, когда импульсы поступают с интервалов в несколько миллисекунд,
Длительность посттетанической потенциации зависит от свойств синапса и характера раздражения. После одиночных стимулов она выражена слабо, после раздражающей серии потенциация может продолжаться от нескольких минут до нескольких часов.
Значение синаптического облегчения, по-видимому, заключается в том, что оно создает предпосылки улучшения процессов переработки информации на нейронах нервных центров, что крайне важно, например, для обучения в ходе выработки условных рефлексов. Повторное возникновение явлений облегчения в нервном центре может вызвать переход ценра из обычного состояния в доминантное.
Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения.
В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.
Если раздражение продолжается, то в химических синапсах может наступить депрессия, по-видимому, в следствие истощения медиатора.
Компенсация нарушенных функций после повреждения того или иного центра – результат проявления пластичности ЦНС.
9. Большая чувствительность ЦНС к изменениям внутренней среды: например, к изменению содержания глюкозы в крови, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую очередь реагируют синапсы нейронов. Особенно чувствительны нейроны ЦНС к недостатку глюкозы и кислорода. При снижении содержания глюкозы в 2 раза ниже нормы могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови – от нарушений функций мозга до полной гибели нейронов.
10. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т. д.). Конвергенция на клетках нервного центра разных афферентных входов предопределяет важные интегративные, перерабатывающие информацию функции центральных нейронов, т. е. высокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.
11. Интеграция в нервных центрах. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).
Координация в деятельности нервных центров обеспечивается специфическими закономерностями во взаимодействии процессов возбуждения и торможения. При этом торможению отводится часто ведущая роль в достижении координационной деятельности центральной нервной системы.
1.2 Торможение в ЦНС
Торможение — это физиологический процесс в центральной нервной системе результатом которого является задержка возбуждения. Торможение не может распространяться подобно возбуждению, являясь местным процессом. Торможение возникает в момент встречи двух возбуждений, одно из которых является тормозящим, а другое тормозимым.
Процесс торможения впервые был показан в 1862 г. русским физиологом И. М. Сеченовым. У лягушки производился разрез головного мозга на уровне зрительных бугров с удалением больших полушарий мозга. Измерялось время рефлекса отдергивания задней лапы при погружении ее в раствор серной кислоты (метод Тюрка). При наложении на разрез зрительных бугров кристаллика поваренной соли время рефлекса увеличивалось. Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое спускается к спинномозговым центрам и тормозит их деятельность.
Выделяют первичное и вторичное торможение. Первичное торможение наблюдается при активации специальных тормозных структур, действующих на тормозную клетку и вызывающих в ней торможение как первичный процесс, без предварительного возбуждения. К первичному торможению относятся пресинаптическое, постсинаптическое и, разновидность последнего, возвратное и латеральное торможение.
Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.
Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.
Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатералям к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением. Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.
Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали. По такому принципу осуществляется торможение мотонейронов.
Параллельное торможение – возбуждение блокирует само себя за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же нейроном.
Латеральное постсинаптическое торможение. Тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение. Такого типа торможение называется латеральным потому, что образующаяся зона торможения находится «сбоку» по отношению к возбужденному нейрону и инициируется им. Латеральное торможение играет особенно важную роль в афферентных системах. Латеральное торможение может образовать тормозную зону,...

Похожие материалы:

Лекция: Общие принципы регуляции функций. Рефлекторная деятельность ЦНС. Нервный центр, свойства нервных центров, особенности проведения возбуждения по нервным центрам

Статья: Гигиеническое значение, состав, свойства атмосферного воздуха

Лекция: Большой и малый круги кровообращения. Строение сердца. Физиологические свойства и особенности сердечной мышечной ткани

Реферат: Целебные свойства соков

История болезни: Многоочаговое поражение подкорковых центров продолговатого и воролиева отделов мозга