Реферат: Биохимия печени

План:
1 Физиология печени
2 Белковый обмен в печени
3 Углеводный обмен в печени
4 Жировой обмен в печени
5 Пигментный обмен в печени
6 Образование билирубина в печени
7 Образование фекальных желчных пигментов
8 Детоксицирующая и клиренсная функция печени
9 Печеночная недостаточность
10 Печеночная энцефалопатия

Дата добавления на сайт: 16 июня 2024


Скачать работу 'Биохимия печени':


План:
1 Физиология печени
2 Белковый обмен в печени
3 Углеводный обмен в печени
4 Жировой обмен в печени
5 Пигментный обмен в печени
6 Образование билирубина в печени
7 Образование фекальных желчных пигментов
8 Детоксицирующая и клиренсная функция печени
9 Печеночная недостаточность
10 Печеночная энцефалопатия
Введение
    Печень представляет собой центральный орган химического гомеостаза организма, где создается единый обменный и энергетиче¬ский пул для метаболизма белков, жиров и углеводов. К основным функциям печени относятся обмен белков, углеводов, липидов, ферментов, витаминов; водный и минеральный обмен, пигментный обмен, секреция желчи, детоксицирующая функция. Все обменные процессы в печени чрезвычайно энергоемки. Основными источниками энергии являются процессы аэробного окисления цикла Кребса и нуклеотиды, выделяющие значитель¬ное количество энергии в результате высвобождения фосфатидных связей при переходе аденозинтрифосфата в аденозиндифосфат.
Белковый обмен в печени
Печень ответственна как за основные анаболи¬ческие, так и за катаболические процессы обмена белков. Синтез белков в печени осуществляется из свободных аминокислот. Это прежде всего экзогенные аминокислоты, поступающие с кровью воротной вены из кишечника. Приток этих аминокислот в печень зависит от количественного и качественного состава пищи, активности пищеварительных ферментов, фазы пищеварения и т. д. Колебания поступления аминокислот в нормальных условиях соответствуют суточному циклу активности печеночных клеток.
Эндогенные свободные аминокислоты образуются в организме вследствие физиологического клеточного распада в других орга¬нах. Обычно приток указанных веществ в печень относительно постоянен. Небольшое количество аминокислот образуется в самой печени из углеводов и жирных кислот.
Печень является единственным местом синтеза альбуминов, фибриногена, протромбина, проконвертина, проакцелерина. Основная масса ?-глобулинов, значительная часть ?-глобулинов, гепарина, ферментов также образуется в печени. Синтез белков и многочисленных ферментов осуществляется в гепатоцитах рибосомами. Собственные белки и ферменты печеночных клеток синтезируются на свободных рибосомах и полисомах гиалоплазмы гепатоцитов, не связанных с мембранами эндоплазматического ретикулума. Синтез белков «на экспорт» осуществляется рибосомами зернистого эндоплазматического ретикулума.
Большинство заболеваний печени с тяжелыми повреждениями паренхимы сопровождается снижением уровня как альбуминов, так и α-глобулинов. Гипоальбуминемия - один из характерных признаков острой и хронической недостаточности печени.
Синтез гама гбулинов осуществояется главным образом плазматическими клетками. Купферовские клетки печени, как показали радиоизотопные исследования, также участвуют в их синтезе. Значительное повышение уровня ?-глобулинов крови при заболеваниях печени с выраженной иммунной реакцией связано не только с общей реакцией ретикулоэндотелиальной ткани, но и с плазматической инфильтрацией.
Печень не только синтезирует такие важнейшие компоненты свертывающей системы крови, как протромбин, фактор VII, но и наряду с другими органами участвует в образовании гепарина. Вследствие этого система свертывания крови в значительной мере зависит от белковосинтетической функции печени и патологических изменений гепатоцитов.
В печени осуществляются все этапы расщепления белков до образования аммиака и мочевины. Протеолитические ферменты расщепляют тканевые и сывороточные белки до низкомолекулярных соединений. Ферменты дезаминирования, окисления, входящие в цикл Кребса, производят дальнейшее многоэтапное расщепление пептидных соединений и аминокислот. При значительных поражениях паренхимы, особенно при массивных некрозах, повышается уровень свободных аминокислот, остаточного азота в крови; при этом значительная часть свободных аминокислот выделяется с мочой. В печени из свободных аминокислот наряду с их разрушением с образованием мочевины и частичной реутилизацией, с новообразованием белков синтезируются жирные кислоты и кетоновые тела. Следовательно, фрагменты белкового обмена в печени включаются в обменные циклы других веществ.
Печень осуществляет катаболизм нуклеопротеидов с их расщеплением до аминокислот, пуриновых и пиримидиновых оснований. В печени последние превращаются в мочевую кислоту, выделяемую затем почками. Важно отметить, что конечные этапы катаболических изменений белковых тел в печени одновременно представляют ее детоксицирующую функцию.
Углеводный обмен в печени
Печень играет центральную роль в многочисленных реакциях промежуточного обмена углеводов. Среди них особенно важны превращение галактозы в глюкозу; превращение Фруктозы в глюкозу; синтез и распад гликогена; глюконеогенез; окисление глюкозы; образование глюкуроновой кислоты.
Превращение галактозы в глюкозу. Галактоза поступает в организм в составе молочного сахара. В печени происходит ее превращение через уридиндифосфогалактозу в глюкозо-1-фосфат. При нарушении функции печени способность организма использовать галактозу снижается, на этом основана функциональная проба печени с нагрузкой галактозой.
Превращение фруктозы в глюкозу. Печень превращает фруктозу во фруктозо-1-фосфат (Ф-1-Ф) с помощью содержащейся в ней специфической фруктокиназы при участии АТФ. Фрукто-зо-1-фосфат расщепляется в печени альдолазой типа В, как и фруктозо-1, 6-дифосфат - промежуточный продукт обмена глюкозы, превращаясь в диоксиацетонфосфат и 3-фосфоглицерино-вый альдегид. Часть фруктозы под действием гексокиназы превращается в фруктозо-6-фосфат, промежуточный продукт основного пути распада глюкозы. Под действием глюкозофосфатизомера-зы фруктозо-6-фосфат превращается в глюкозо-6-фосфат (Г-6-Ф). Исследование утилизации фруктозы положено в основу одной из функциональных проб печени, которая в настоящее время в клинике используется мало.
Синтез и распад гликогена. Гликоген синтезируется из активированной глюкозы, т. е. из Г-6-Ф. Печень может синтезировать гликоген и из других продуктов углеводного обмена, например из молочной кислоты. Распад гликогена в печени происходит и гидролитически, и (преимущественно) фосфоролитически. Под действием фосфорилазы образуется Г-1-Ф, который превращается в Г-6-Ф; последний включается в различные метаболические процессы. Печень служит единственным поставщиком глюкозы в кровь, так как только под влиянием печеночной микросомальной Г-6-фосфатазы из Г-6-Ф освобождается глюкоза. Таким образом, под влиянием обратимых реакций синтеза и распада гликогена регулируется количество глюкозы в соответствии с потребностями организма. Уровень гликогена регулируется гормональными факторами: АКТГ, глюкокортикоиды и инсулин повышают содержание гликогена в печени, а адреналин, глюкагон, соматотропный гормон и тироксин понижают.
Глюконеогенез. Глюкоза может синтезироваться из различных соединений неуглеводной природы, таких, как лактат, глицерин, некоторые метаболиты цитратного цикла и глюкопластические аминокислоты (глицин, аланин, серии, треонин, валин, аспарагиновая и глютаминовая кислоты, аргинин, гистидин, пролин и оксипролин). Глюконеогенез связывает между собой обмен белков и углеводов и обеспечивает жизнедеятельность при недостатке углеводов в пище.
Образование глюкуроновой кислоты. С обменом углеводов связан синтез глюкуроновой кислоты, необходимой для конъюгации плохо растворимых веществ (фенолы, билирубин и др.) и образования смешанных полисахаридов (гиалуроновая кислота, гепарин и др.).
В основе нарушений обмена углеводов при заболеваниях печени лежат повреждения митохондрий, которые ведут к снижению окислительного фосфорилирования. Вторично страдают функции печени, требующие расхода энергии - синтез белка, эстерификация стероидных гормонов. Дефицит углеводов приводит также к усилению анаэробного гликолиза, вследствие чего в клетках накапливаются кислые метаболиты, вызывающие снижение рН. Следствием этого является разрушение лизосомальных мембран и выход в цитоплазму кислых гидролаз, вызывающих некроз гепатоцитов.
Жировой обмен в печени
Печень играет ведущую роль в обмене липидных веществ - нейтральных жиров, жирных кислот, фосфолипидов, холестерина. Участие печени в обмене липидов тесно связано с ее желчевыделительной функцией: желчь активно участвует в ассимиляции жиров в кишечнике. При нарушении образования или выделения желчи жиры в повышенном количестве выделяются с калом. Желчь усиливает действие панкреатической липазы и вместе с рядом других веществ участвует в образовании хиломикронов. Гепатоциты с помощью микроворсинок непосредственно захватывают липиды из крови. В печени осуществляются следующие процессы обмена липидов: окисление триглицеридов, образование ацетоновых тел, синтез триглицеридов и фосфолипидов, синтез липопротеидов, синтез холестерина.
Гидролиз триглицеридов на глицерин и жирные кислоты происходит под действием внутрипеченочных липолитических ферментов. Печень является центральным местом метаболизма жирных кислот. В ней происходит синтез жирных кислот и их расщепление до ацетилкофермента А, а также образование кетоновых тел, насыщение ненасыщенных жирных кислот и их включение в ресинтез нейтральных жиров и фосфолипидов с последующим выведением в кровь и желчь. Катаболизм жирных кислот осуществляется путем ?-окисления, главной реакцией которого является активирование жирной кислоты с участием кофермента А и АТФ. Освобождающийся ацетилкофермент А подвергается полному окислению в митохондриях, в результате чего клетки обеспечиваются энергией. Следует отметить, что в печени образуется лишь 10% общего количества жирных кислот, основным местом их синтеза является жировая ткань. Кетоновые тела (ацетоуксусная, бета -оксимасляная кислоты и ацетон) образуются почти исключительно в печени. В норме их содержание в плазме не превышает 10 мг/л, а при сахарном диабете оно может увеличиться в сотни раз. Возникающий в патологических условиях кетоз связан с диссоциацией кетогенеза в печени и утилизацией кетоновых тел в других органах. Из жирных кислот, глицерина, фосфорной кислоты, холина и других оснований печень синтезирует важнейшие составные части клеточных мембран - различные фосфолипиды. Синтез нейтральных жиров и фосфолипидов связан главным образом с митохондриями, а также с гладким эндоплазматическим ретикулумом.
Синтез холестерина в основном происходит в печени и кишечнике, где образуется более 90% всего холестерина. Холестерин представляет собой важную составную часть плазмы крови и используется для синтеза кортикостероидных гормонов и витамина D. Основная масса холестерина синтезируется гладкой эндоплазматической сетью. Уровень холестерина поддерживается постоянным в результате синтеза, катаболизма и выведения избыточного количества с желчью в кишечник: пятая часть его выделяется с калом, а большая часть всасывается вновь, обеспечивая печеночно-кишечную циркуляцию. Печеночные клетки полностью ответственны за удаление избыточного количества холестерина из организма путем выведения как самого холестерина, так и его производных (желчные кислоты) с желчью. Нарушение печеночно-кишечной циркуляции вследствие окклюзии желчевыводящих путей приводит к резкому возрастанию синтеза желчных кислот из холестерина.
В печени происходит синтез липопротеидов, особой транспортной формы фосфолипидов, нейтральных жиров и холестерина. Предполагают, что фосфолипиды служат связующим звеном между белком и липидным компонентом. В зависимости от того, с какой фракцией сывороточных белков они передвигаются, при электрофорезе различают ?-, ?- и пре-?-липопротеиды. Пре-?-липопротеиды - главная транспортная форма эндогенных триглицеридов.
Пигментный обмен в печени
Возникновение желтухи всегда обусловлено нарушением обмена билирубина, который образуется в результате распада гемоглобина эритроцитов и разрушения гема. Этот процесс является естественной составной частью постоянного обновления красной крови в организме.
Образование билирубина в печени
Гемоглобин превращается в билирубин в ретикулоэндотелиальной системе, главным образом в печени, селезенке и костном мозге посредством сложного комплекса окислительно-восстановительных реакций. Конечным продуктом распада является биливердин, не содержащий железа и белковой части. Клетки ретикулоэндотелиальной системы выделяют в кровь непрямой, свободный билирубин. За сутки у человека распадается около 1% циркулирующих эритроцитов с образованием 100 - 250 мг билирубина, при этом 5 - 20% билирубина образуется из гемоглобина не зрелых, а преждевременно разрушенных эритроцитов и из других гемсодержащих веществ. Это так называемый шунтовои или ранний билирубин.
Исследованиями с введением в организм изотопных предшественников гема (15N- и 14С-глицин) установлено, что большинство образующихся меченых желчных пигментов выделяются с калом в виде уробилина или стеркобилина в период между 90-м и 150-м днем после введения изотопа, что соответствует продолжительности жизни эритроцитов [Gray С. Н., 1950, 1959; London J. М., 1950].
Выявлено незначительное содержание меченого пигмента в кале сразу же после применения изотопного предшественника, составляющее от 10 до 20% всей меченой пигментной экскреции, что соответствует раннему, или шунтовому, билирубину.
Значительное увеличение образования раннего билирубина обнаружено при болезнях, связанных с неэффективным эритропоэзом, таких, как железодефицитная анемия, пернициозная анемия, талассемия, сидеробластическая анемия, эритропоэтическая порфирия, свинцовое отравление. При этих состояниях количество раннего пигмента колеблется от 30 до 80% всех желчных пигментов. Больные с этой патологией имеют значительно увеличенную фекальную уробилиногенную экскрецию как следствие увеличенного тотального желчного пигментного оборота, но без укорочения жизни эритроцитов периферической крови.
Существование второго неэритроцитного компонента раннего билирубина доказано с применением меченой аминолевулиновой кислоты, являющейся маркером гема из других источников. Наиболее вероятным источником неэритроцитного гема служат печеночные протеиды: миоглобин, цитохромы, каталаза и триптофанпирролаза печени.
Экспериментально установлено, что печеночная часть раннего билирубина может увеличиваться после анестезии, применения фенобарбитала. Этим может объясняться повышение сывороточного билирубина, часто наблюдаемое непосредственно после операции
Образование фекальных желчных пигментов
Связанный билирубин в желчи образует макромолекулярный комплекс (мицеллу) с холестерином, фосфолипидами и желчными солями. С желчью билирубин выводится в тонкий кишечник (рис. 11 цветной). У взрослого человека кишечные бактерии восстанавливают пигмент с образованием уробилиногена.
Небольшая часть билирубина (около 10%) восстанавливается до уробилиногена на пути в тонкий кишечник во внепеченочных желчных ходах и желчном пузыре. Из тонкого кишечника часть образовавшегося уробилиногена всасывается через кишечную стенку, попадает в v.portae и током крови переносится в печень (так называемая кишечно-печеночная циркуляция уробилиногена). В печени пигмент полностью расщепляется. Однако незначительное количество уробилиногена может попадать в общий круг кровообращения и тогда определяется в моче (0 - 4 мг/сутки).
Основное количество уробилиногена из тонкого кишечника поступает в толстый и выделяется с калом. Количество фекального уробилиногена варьирует от 47 до 276 мг в день в зависимости от массы тела и пола (у мужчин немного больше).
Исследованиями J. R. Bloomer (1970) установлено, что в норме только 50% дневной продукции билирубина выявляется в виде фекального уробилиногена. Это несоответствие связано с различными превращениями билирубина в кишечнике и методическими трудностями его определения.
Мочевая экскреция желчных пигментов. Уробилиноген, определяющийся в моче у здоровых людей в небольшом количестве, может повышаться при увеличении фекального уробилиногена (гемолиз), а также когда имеется повышенный уровень связанного билирубина в плазме. Клиническое значение имеет то, что при нарушении функции печени уробилиноген может быть обнаружен в моче до того, как выявляется желтуха. При механической желтухе уробилиноген в моче отсутствует.
Билирубин в моче (желчные пигменты) появляется только при увеличении в крови связанного (прямого) билирубина.
Внешнесекреторная функция печени. Образование и выделение желчи имеет жизненно важное значение для организма.
Желчь - сложный водный раствор органических и неорганических веществ, с осмотическими свойствами, близкими к таковым плазмы. Основными органическими компонентами желчи являются желчные кислоты, фосфолипиды, холестерин и желчные пигменты. Другие органические составляющие, включая протеины, присутствуют в очень малых концентрациях- Желчные кислоты и фосфолипиды (лецитин) составляют основную часть твердой фракции желчи. В печеночной желчи человека нормальные концентрации желчных кислот имеют значения от 3 до 45 ммоль/л (140 - 2230 мг%) или 8 - 53% общей твердой части желчи, концентрация лецитина от 1,4 до 8,1 г/л или от 9 до 21% твердой части, концентрация холестерина от 2,52 до 8,32 ммоль/л (97 - 320 мг%), что соответствует 3 - 11% твердого осадка. Концентрация билирубина определяется цифрами от 205,25 до 1197,28 мкмоль/л (12 - 70 мг%) или от 0,4 до 2% твердого осадка. В желчном пузыре концентрация всех составляющих значительно выше, что связано с реабсорбцией воды и неорганических электролитов.
Важность определенного содержания желчных кислот и фосфолипидов для растворения холестерина показана в исследованиях В. А. Галкина, В. А. Максимова (1975), М. Ф. Нестерина (1967).
Сложилось мнение, что фиксированное соотношение концентрации желчных кислот, фосфолипидов и холестерина обеспечивает им более высокую растворимость в воде.
Речь идет об образовании устойчивой мицеллы, которая впоследствии была названа липидным комплексом. На его поверхности могут адсорбироваться другие компоненты желчи [Нестерин М. Ф., 1967].
Физиологическая роль липидного комплекса заключается, таким образом, в обеспечении не только эффективного пищеварения, но и функционирования особой выделительной системы: из печени в кишечник.
Основные компоненты желчи (желчные кислоты, фосфолипиды, холестерин), всасываясь в кишечнике, постоянно совершают печеночно-кишечный круговорот, что позволяет поддерживать оптимальную концентрацию активных компонентов желчи в период пищеварения, а также разгружает обмен веществ и облегчает синтетическую работу печени. Нарушения состава желчи могут способствовать образованию конкрементов в желчевыводящих путях.
Желчные кислоты (ЖК) являются важнейшим стабилизатором коллоидного состояния желчи. Достигнуты определенные успехи в изучении обмена желчных кислот и нарушений их метаболизма при различных поражениях печени.
Детоксицирующая и клиренсная функция печени
Как уже указывалось, печень участвует в обезвреживании ряда эндогенных токсических продуктов клеточного...

Похожие материалы:

История болезни: Цирроз печени неуточненной этиологии. Синдром портальной гипертензии, декомпенсация. Кровотечение из расширенных вен пищевода ФОРАСА 2Б, асцит

Лекция: Лечебное питание при болезнях печени и желчного пузыря. Диета №5

История болезни: Цирроз печени в исходе хронического алкогольного гепатита с синдромом портальной гипертензии (асцит, спленомегалия, состоявшееся кровотечение из ВРВП)

Реферат: Диагностика и лечение заболеваний печени и поджелудочной железы

История болезни: Болезнь Коновалова-Вильсона, стадия цирроза печени