Шпаргалка: Шпора к экзамену по биохимии

Шпаргалка для подготовки к экзамену по биохимии


Дата добавления на сайт: 02 марта 2024

1.Ферменты – высокоспецифичные белки, которые выполняют ф-и юиологических катализаторов (в-во, ускоряющее хим-ю р-ю, но само в ней не участвующее). Не влияют на энергетический итог. В обратимых р-ях ускоряют как прямую, так и обратную р-и. Не влияют на направленность обратимой р-и, которая опр-ся только соотношением конц-й субстратов и конечных продуктов. Не влияют на равновесие обратимой р-и, а только ускоряют ее достижение. Субстрат - в-во, хим-е превращения которого в продукт катализирует ф-т. Участок пов-ти молекулы, который непосредственно взаимодействует с молекулой субстрата, наз-ся активным центром ф-та. А.Ц. образован из остатков аминокислот, находящийся в различных уч-х полипептидной цепи, или цепей, пространственно сближенных. Образуется на уровне третичной стр-ры белка-ф-та. В его пределах различают адсорбционный уч-к (область активного центра, на котором происходит связывание молекул субстрата. Форм-ся связыванием 1-3 радикалами а.к., которые обычно расположены рядом с каталитическим центром. Ф-я-связывание молекул субстрата и передача этой молекулы каталитическому центру в наиболее удобном положении) и каталитический уч-к (область активного центра ф-та, которая непосредственно учавствует в химических преобразованиях субстрата. Формируется за счет радикалов 2-3 аминокислот, расположенных в разных частях полипептидной цепи ф-та, но пространственно сближенных за счет изгиба цепи). Апофермент-это полипептидная часть ф-та. Кофактор-это небелковый компонент, присутствие которого является существенным для энзиматической активности.

2.катализатор – в-во, которое направляет р-ю по такому обходному пути, на котором обходные барьеры ниже. Ф-ы обладают всеми св-ми обычных катализаторов. Но все ф-ы являются белками. Главные отличия: высокая эффективность действия; высокая избирательность ф-та к субстратам и к типу катализируемой р-и; высокая чувствительность ф-ов к неспецифическим физико-химическим ф-м среды, t, рН, ионной силе р-ра; высокая чувствительность к химическим реагентам; высокая и избирательная чувствительность к физико-химическим воздействиям тех или иных химических в-в, которые благодаря этому могут взаимодействовать с ф-ом, улучшая или затрудняя его работу; отличаются высокой специфичностью действия.
Механизм действия. При ферментативном энзиматическом катализе ф-т соединяется со своим субстратом, образуя нестойкий промежуточный ф-т – субстратный комплекс, который в конце р-и распадается с освобождением ф-та и продукта р-и. В процессе р-и различают следующие стадии: присоединение молекулы субстрата к ф-ту, преобразование первичного промежуточного соединения в один или несколько последовательных комплексов и протекающее в одну или несколько стадий, отделение конечных продуктов р-и от ф-та. В образовании ф-т – субстратных комплексов участвуют водородные связи, электростатические и гидрофобные взаимодействия, ковалентные и коардинационные связи.

3. АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ ФЕРМЕНТАТИВНЫХ ПРОЦЕССОВ
Существуют различные механизмы регуляции процессов, протекающих в организме.
3 уровня регуляции:
1) Самый молодой уровень филогенетически - НЕЙРОГУМОРАЛЬНАЯ регуляция (с участием центральной нервной системы, классических гормонов и гормонов местного действия)
2) РЕГУЛЯЦИЯ НА ГЕНЕТИЧЕСКОМ УРОВНЕ - изменение скорости биосинтеза белка.
3) Филогенетически наиболее старый уровень - АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ ФЕРМЕНТОВ.
АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ - это регуляция, которая происходит благодаря только самим участникам реакции, то есть за счет фермента, его субстрата (или субстратов) и/или продуктов деятельности данного фермента. Фермент не только работает, но еще и сам себя регулирует.
Механизмы автономной саморегуляции очень многочисленны, но построены на двух основных принципах.
1) Механизмы, основанные на кинетических свойствах фермента, количественно характеризуемых Км и Vmax - это механизмы КИНЕТИЧЕСКОГО ТИПА.
2) Второй принцип связан с аллостерическими свойствами фермента, то есть со способностью фермента угнетаться или активироваться под действием субстрата и/или продуктов. Это механизмы АЛЛОСТЕРИЧЕСКОГО ТИПА.
Такие аллостерические механизмы есть не у каждого фермента. Они обычно акладываются на механизмы кинетического типа и определяют особенности регуляции данного фермента.

4. ХАРАКТЕРИСТИКА КОНКУРЕНТНЫХ ИНГИБИТОРОВ
Конкурируют с субстратом за обладание активным центром фермента. По структуре они похожи на субстрат. Присоединяются к адсорбционному центру фермента: действуют на стадии I-го этапа ферментативного катализа. Поэтому конкурентные ингибиторы увеличивают Km и уменьшают сродство фермента к субстрату. Они не изменяют Vmax ферментативной реакции: при повышении концентрации субстрата действие конкурентных ингибиторов можно преодолеть - молекулы конкурентного ингибитора постепенно вытесняются субстратом с активного центра фермента.
ХАРАКТЕРИСТИКА НЕКОНКУРЕНТНЫХ (АЛЛОСТЕРИЧЕСКИХ) ИНГИБИТОРОВ
Связываются с аллостерическим центром фермента. Происходят изменения конформации аллостерического центра, а затем, через всю молекулу, они передаются на каталитический центр. Изменение конформации каталитического центра вызывает снижение активности фермента. Поэтому неконкурентные ингибиторы уменьшают Vmax - снижают скорость протекания II-го этапа ферментативного катализа. Не влияют на Km и не изменяют сродство фермента к субстрату.
Измеряя скорость реакции при разных концентрациях субстрата в присутствии и в отсутствие ингибитора, можно не только распознать тип ингибирования, но и по степени изменения Км или Vmax количественно оценить степень сродства данного ингибитора к ферменту.

5. КЛАССИФИКАЦИЯ ФЕРМЕНТОВ

I класс - ОКСИДОРЕДУКТАЗЫ.
К данному классу относятся ферменты, катализирующие окислительно-восстановительные реакции. При окислении может происходить либо отнятие водорода от окисляемого вещества, либо присоединение кислорода к окисляемому веществу. В зависимости от способа окисления различают следующие подклассы оксидоредуктаз:
1) ДЕГИДРОГЕНАЗЫ. Катализируют реакции, при которых происходит отнятие водорода от окисляемого вещества.
2) ОКСИГЕНАЗЫ. Ферменты этого подкласса катализируют включение кислорода в окисляемое вещество.
a) Монооксигеназы - включают один атом кислорода в окисляемое вещество.
б)Диоксигеназы - включают 2 атома кислорода в окисляемое вещество. Часто это сопровождается разрывом циклической структуры. По месту разрыва связи (на рисунке обозначено стрелкой) присоединяются атомы кислорода.
II класс - ТРАНСФЕРАЗЫ
ктализируют реакции переноса химических групп с молекулы одного вещества на молекулу другого вещества.
III класс - ГИДРОЛАЗЫ
Катализируют реакции разрушения химических связей с участием воды.
IV класс - ЛИАЗЫ
Катализируют реакции разрушения химических связей без участия воды.
V класс - ИЗОМЕРАЗЫ
Катализируют реакции изомерных превращений.
VI класс - ЛИГАЗЫ (СИНТАЗЫ, СИНТЕТАЗЫ)
Катализируют реакции синтеза.
Одна и та же химическая реакция в организме может катализироваться разными белками-ферментами. В таком случае они называются изоферментами - это разные молекулярные формы одного и того же фермента. Они могут отличаться обычно очень незначительно. Например, в молекуле один или несколько аминокислотных остатков могут быть заменены другими. Но этого достаточно, чтобы возникли различия в значениях ИЭТ, оптимальном значении рН для действия фермента (рН-оптимум), и в субстратной специфичности, и в величинах Vmax и Km. Называют такие ферменты, как правило, одинаково, но добавляют к названию номер или иное дополнение (для идентификации). И в этом случае, если определять кинетику ферментативных реакций изоферментов, то кривые будут отличаться друг от друга. Если ферменты находятся в клетках разного типа, то изоферменты будут определять специфику метаболизма своих клеток.
Но если изоферменты находятся в одной клетке, то их кинетические кривые будут сливаться в одну общую кривую, которая имеет двухступенчатую форму. Такая система регуляции работает при разных концентрациях субстрата, которые изменяются в очень широких пределах. Наличие двух изоферментов позволяет успешно превращать субстрат и при малых, и при больших концентрациях субстрата.

6.СТРОЕНИЕ И СВОЙСТВА БЕЛКОВ.
БЕЛКИ или ПРОТЕИНЫ - это высокомолекулярные азотсодержащие органические вещества, линейные гетерополимеры, структурным компонентом которых являются аминокислоты, связанные пептидными связями. Кроме понятия «белок», в химии встречается термины «ПЕПТИД» и «ПОЛИПЕПТИД». Пептидом обычно называют олигомер, состоящий не более чем из 10 аминокислот. Но встречаются и молекулы, содержащие от 10 до 100 аминокислот – они относятся к группе небольших ПОЛИПЕПТИДОВ, крупные же полипептиды могут содержать и более 100 аминокислот. Столько же аминокислот могут содержать и некоторые небольшие белки. Поэтому граница по количеству аминокислотных остатков, а, стало быть, и по молекулярной массе, между белками и полипептидами, весьма условна.
ПРОСТРАНСТВЕННАЯ ОРГАНИЗАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ
В основе каждого белка лежит полипептидная цепь. Она не просто вытянута в пространстве, а организована в трехмерную структуру. Поэтому существует понятие о 4-х уровнях пространственной организации белка, а именно - первичной, вторичной, третичной и четвертичной структурах белковых молекул.
Первичная структура белка - последовательность аминокислотных фрагментов, прочно (и в течение всего периода существования белка) соединенных пептидными связями. Существует период полужизни белковых молекул - для большинства белков около 2-х недель. Если произошел разрыв хотя бы одной пептидной связи, то образуется уже другой белок.
Вторичная структура - это пространственная организация стержня полипептидной цепи. Существуют 3 главнейших типа вторичной структуры:
1) Альфа-спираль - имеет определенные характеристики: ширину, расстояние между двумя витками спирали. Для белков характерна правозакрученная спираль. В этой спирали на 10 витков приходится 36 аминокислотных остатков. У всех пептидов, уложенных в такую спираль, эта спираль абсолютно одинакова. Фиксируется альфа-спираль с помощью водородных связей между NH-группами одного витка спирали и С=О группами соседнего витка. Эти водородные связи расположены параллельно оси спирали и многократно повторяются, поэтому прочно удерживают спиралеобразную структуру. Более того, удерживают в несколько напряженном состоянии (как сжатую пружину).
Бета-складчатая структура - или структура складчатого листа. Фиксируется также водородными связями между С=О и NH-группами. Фиксирует два участка полипептидной цепи. Эти цепи могут быть параллельны или антипараллельны. Если такие связи образуются в пределах одного пептида, то они всегда антипараллельны, а если между разными полипептидами, то параллельны.
Нерегулярная структура - тип вторичной структуры, в котором расположение различных участков полипептидной цепи относительно друг друга не имеет регулярного (постоянного) характера, поэтому нерегулярные структуры могут иметь различную конформацию.
ТРЕТИЧНАЯ СТРУКТУРА
Это трехмерная архитектура полипептидной цепи – особое взаимное расположение в пространстве спиралеобразных, складчатых и нерегулярных участков полипептидной цепи. У разных белков третичной структуры различна. В формировании третичной структуры участвуют дисульфидные связи и все слабые типы связей.
Выделяют два общих типа третичной структуры:
1) В фибриллярных белках (например, коллаген, эластин) молекулы которых имеют вытянутую форму и обычно формируют волокнистые структуры тканей, третичная структура представлена либо тройной альфа-спиралью (например, в коллагене), либо бета-складчатыми структурами.
2) В глобулярных белках, молекулы которых имеют форму шара или эллипса (латинское название: GLOBULA - шар), встречается сочетание всех трех типов структур: всегда есть нерегулярные участки, есть бета-складчатые структуры и альфа-спирали.
Обычно в глобулярных белках гидрофобные участки молекулы находятся в глубине молекулы. Соединяясь между собой, гидрофобные радикалы образуют гидрофобные кластеры (центры). Формирование гидрофобного кластера вынуждает молекулу соответствующим образом изгибаться в пространстве. Обычно в молекуле глобулярного белка бывает несколько гидрофобных кластеров в глубине молекулы. Это является проявлением двойственности свойств белковой молекулы: на поверхности молекулы - гидрофильные группировки, поэтому молекула в целом - гидрофильная, а в глубине молекулы - спрятаны гидрофобные радикалы.
ЧЕТВЕРТИЧНАЯ СТРУКТУРА
Встречается не у всех белков, а только у тех, которые состоят из двух или более полипептидных цепей. Каждая такая цепь называется СУБЪЕДИНИЦЕЙ данной молекулы (или ПРОТОМЕРОМ). Поэтому белки, обладающие четвертичной структурой, называют ОЛИГОМЕРНЫМИ белками. В состав белковой молекулы могут входить одинаковые или разные субъединицы. Например, молекула гемоглобина «А» состоит из двух субъединиц одного типа и двух субъединиц другого типа, то есть является тетрамером. Фиксируются четвертичные структуры белков всеми типами слабых связей, а иногда еще и дисульфидными связями.
НАТИВНОСТЬ - это уникальный комплекс физических, физико-химических, химических и биологических свойств белковой молекулы, который принадлежит ей, когда молекула белка находится в естественном, природном (нативном) состоянии.
Например: белок хрусталика глаза - кристаллин - обладает высокой прозрачностью только в нативном состоянии).


7.ПЕРВИЧНАЯ СТРУКТУРА

Первичная структура белка - последовательность аминокислотных фрагментов, прочно (и в течение всего периода существования белка) соединенных пептидными связями. Существует период полужизни белковых молекул - для большинства белков около 2-х недель. Если произошел разрыв хотя бы одной пептидной связи, то образуется уже другой белок.
Вторичная структура - это пространственная организация стержня полипептидной цепи. Существуют 3 главнейших типа вторичной структуры:
1) Альфа-спираль - имеет определенные характеристики: ширину, расстояние между двумя витками спирали. Для белков характерна правозакрученная спираль. В этой спирали на 10 витков приходится 36 аминокислотных остатков. У всех пептидов, уложенных в такую спираль, эта спираль абсолютно одинакова. Фиксируется альфа-спираль с помощью водородных связей между NH-группами одного витка спирали и С=О группами соседнего витка. Эти водородные связи расположены параллельно оси спирали и многократно повторяются, поэтому прочно удерживают спиралеобразную структуру. Более того, удерживают в несколько напряженном состоянии (как сжатую пружину).
Бета-складчатая структура - или структура складчатого листа. Фиксируется также водородными связями между С=О и NH-группами. Фиксирует два участка полипептидной цепи. Эти цепи могут быть параллельны или антипараллельны. Если такие связи образуются в пределах одного пептида, то они всегда антипараллельны, а если между разными полипептидами, то параллельны.
Нерегулярная структура - тип вторичной структуры, в котором расположение различных участков полипептидной цепи относительно друг друга не имеет регулярного (постоянного) характера, поэтому нерегулярные структуры могут иметь различную конформацию.

8.ТРЕТИЧНАЯ СТРУКТУРА
Это трехмерная архитектура полипептидной цепи – особое взаимное расположение в пространстве спиралеобразных, складчатых и нерегулярных участков полипептидной цепи. У разных белков третичной структуры различна. В формировании третичной структуры участвуют дисульфидные связи и все слабые типы связей.
Выделяют два общих типа третичной структуры:
1) В фибриллярных белках (например, коллаген, эластин) молекулы которых имеют вытянутую форму и обычно формируют волокнистые структуры тканей, третичная структура представлена либо тройной альфа-спиралью (например, в коллагене), либо бета-складчатыми структурами.
2) В глобулярных белках, молекулы которых имеют форму шара или эллипса (латинское название: GLOBULA - шар), встречается сочетание всех трех типов структур: всегда есть нерегулярные участки, есть бета-складчатые структуры и альфа-спирали.
Обычно в глобулярных белках гидрофобные участки молекулы находятся в глубине молекулы. Соединяясь между собой, гидрофобные радикалы образуют гидрофобные кластеры (центры). Формирование гидрофобного кластера вынуждает молекулу соответствующим образом изгибаться в пространстве. Обычно в молекуле глобулярного белка бывает несколько гидрофобных кластеров в глубине молекулы. Это является проявлением двойственности свойств белковой молекулы: на поверхности молекулы - гидрофильные группировки, поэтому молекула в целом - гидрофильная, а в глубине молекулы - спрятаны гидрофобные радикалы.
ЧЕТВЕРТИЧНАЯ СТРУКТУРА
Встречается не у всех белков, а только у тех, которые состоят из двух или более полипептидных цепей. Каждая такая цепь называется СУБЪЕДИНИЦЕЙ данной молекулы (или ПРОТОМЕРОМ). Поэтому белки, обладающие четвертичной структурой, называют ОЛИГОМЕРНЫМИ белками. В состав белковой молекулы могут входить одинаковые или разные субъединицы. Например, молекула гемоглобина «А» состоит из двух субъединиц одного типа и двух субъединиц другого типа, то есть является тетрамером. Фиксируются четвертичные структуры белков всеми типами слабых связей, а иногда еще и дисульфидными связями.

9. ДЕНАТУРАЦИЯ

Для обозначения процесса, при котором нативные свойства белка теряются, используют термин ДЕНАТУРАЦИЯ.
ДЕНАТУРАЦИЯ - это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур. Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями. Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.
ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ДЕНАТУРАЦИЮ БЕЛКОВ
Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.
Физические факторы
1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-500С. Такие белки называют термолабильными. Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными.
2. Ультрафиолетовое облучение
3. Рентгеновское и радиоактивное облучение
4. Ультразвук
5. Механическое воздействие (например, вибрация).
Химические факторы
1. Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).
2. Соли тяжелых металлов (например, CuSO4).
3. Органические растворители (этиловый спирт, ацетон)
4. Растительные алкалоиды.
5. Мочевина в высоких концентрациях
Обратимость денатурации
В пробирке (in vitro) чаще всего это – необратимый процесс. Если же денатурированный белок поместить в условия, близкие к нативным, то он может ренатурировать, но очень медленно, и такое явление характерно не для всех белков.
In vivo, в организме, возможна быстрая ренатурация. Это связано с выработкой в живом организме специфических белков, которые «узнают» структуру денатурированного белка, присоединяются к нему с помощью слабых типов связи и создают оптимальные условия для ренатурации. Такие специфические белки известны как «белки теплового шока» или «белки стресса».
Белки стресса
Существует несколько семейств этих белков, они отличаются по молекулярной массе.
Например, известен белок hsp 70 – heatshock protein массой 70 kDa.
Такие белки есть во всех клетках организма. Они выполняют также функцию траспорта полипептидных цепей через биологические мембраны и участвуют в формировании третичной и четвертичной структур белковых молекул. Перечисленные функции белков стресса называются шаперонными. При различных видах стресса происходит индукция синтеза таких белков: при перегреве организма (40-440С), при вирусных заболеваниях, отравлениях солями тяжелых металлов, этанолом и др.
В организме южных народов установлено повышенное содержание белков стресса, по сравнению с северной расой.

11.БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ. БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ - это совокупность окислительных процессов в живом организме, протекающих с обязательным участием кислорода. Синоним - ТКАНЕВОЕ ДЫХАНИЕ. Окисление одного вещества невозможно без восстановления другого вещества. Окислительно-восстановительных процессов в живой природе очень много. Часть окислительно-восстановительных процессов, протекающих с участием кислорода, относится к биологическому окислению.
ЭТАПЫ КАТАБОЛИЗМА
1-й этап. Образование мономеров из полимеров.
Полимеры -------->Мономеры
Белки ----------->Аминокислоты
Крахмал --------->глюкоза
Жиры ------------>глицерин + жирные кислоты
2-й этап. Превращение мономеров в ПВК и Ацетил-КоА.
3-й этап. Превращение Ацетил-КоА в конечные продукты катаболизма: СО2 и Н2О.
Для всех классов веществ последний этап катаболизма одинаков: на 3-м этапе образуется большинство субстратов митохондриального окисления - 4 вещества из 9 основных и 5-й субстрат - ПВК.
ОКИСЛИТЕЛЬНОЕ ДЕКАРБОКСИЛИРОВАНИЕ ПИРУВАТА
1-ю реакцию катализирует фермент ПИРУВАТДЕКАРБОКСИЛАЗА (Е1).
Простетической группой пируватдекарбоксилазы является тиаминдифосфат (ТПФ, тиаминпирофосфат, ТДФ) - это активная форма витамина В1. Активная часть ТПФ - тиазоловое кольцо и атом водорода в нем. Пируватдекарбоксилаза отщепляет CO2, а оставшаяся оксиэтильная группа присоединяется к ТПФ.
2-ю и 3-ю реакцию процесса катализирует фермент АЦИЛТРАНСФЕРАЗА (Е2). Простетическая группа ацетилтрансферазы - амид липоевой кислоты. Катализирует перенос оксиэтильного остатка на свой собственный кофермент. В ее составе есть дисульфидная связь.

12. БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ЦТК
ГЛАВНАЯ РОЛЬ ЦТК - ОБРАЗОВАНИЕ БОЛЬШОГО КОЛИЧЕСТВА АТФ.
СИНТЕЗ АТФ.Во внутренней мембране митохондрий расположен интегральный белковый комплекс – Н+-зависимая АТФ-синтаза seu Н+-зависимая АТФ-аза (два разных названия связаны с полной обратимостью катализируемой реакции), обладающий значительной молекулярной массой – более, чем 500кДа. Состоит из двух субъединиц: FO и F1.
F1 представляет из себя грибовидный вырост на матриксной поверхности внутренней митохондриальной мембраны, FO же пронизывает эту мембрану насквозь. В толще FO расположен протонный канал, позволяющий протонам возвращаться обратно в матрикс по градиенту их концентраций.
F1 способна связывать АДФ и фосфат на своей поверхности с образованием АТФ - без затраты энергии, но обязательно в комплексе с ферментом. Энергия необходима лишь для освобождения АТФ из этого комплекса. Эта энергия выделяется в результате тока протонов через протонный канал FO.
В дыхательной цепи сопряжение абсолютно: ни одно вещество не может окисляться без восстановления другого вещества.
Но при синтезе АТФ сопряжение одностороннее: окисление может идти без фосфорилирования, а фосфорилирование без окисления никогда не идёт. Это означает, что система МтО может работать без синтеза АТФ, но АТФ не может быть синтезирована, если не работает система МтО.
1. ЦТК - главный источник АТФ. Энергию для образования большого количества АТФ дает полный распад Ацетил-КоА до СО2 и Н2О.
2. ЦТК - это универсальный терминальный этап катаболизма веществ всех классов.
3. ЦТК играет важную роль в процессах анаболизма (промежуточные продукты ЦТК):
- из цитрата -------> синтез жирных кислот
- из aльфа-кетоглутарата и ЩУК ---------> синтез аминокислот
- из ЩУК ----------> синтез углеводов
- из сукцинил-КоА -----------> синтез гема гемоглобина
Способ образования АТФ, когда нет сопряжения с процессами окисления, называется СУБСТРАТНЫМ ФОСФОРИЛИРОВАНИЕМ (при этом используется макроэргическая связь в молекуле какого-нибудь субстрата). В организмах высших животных и человека этот путь получения АТФ не является главным. Благодаря такому механизму окислительное декарбоксилирование -кетокислот может считаться энергетически более выгодной, потому что образуется вещество с макроэргической связью - ацетил-КоА. Некоторые синтетазы используют макроэргические связи из Ацетил-КоА или Сукцинил-КоА для реакций биосинтеза.

13. 14. МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ (МтО).
Система митохондриального окисления - мультиферментная система, постепенно транспортирующая протоны и электроны на кислород с образованием молекулы воды.
Все ферменты митохондриального окисления встроены во внутреннюю мембрану митохондрий. Только первый переносчик протонов и электронов - никотинамидная дегидрогеназа расположена в матриксе митохондрии. Этот фермент отнимает водород от субстрата и передает его следующему переносчику. Полный комплекс таких ферментов образует \"дыхательный ансамбль\" («дыхательную цепь»), в пределах которого атомы водорода отнимаются от субстрата, затем передаются последовательно от одного переносчика к другому, и, наконец, передаются на кислород воздуха с образованием воды.
Существует строгая последовательность работы каждого звена в цепочке переносчиков. Эта последовательность определяется величиной РЕДОКС-ПОТЕНЦИАЛА (ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИАЛА, сокращенно - ОВП) каждого звена. ОВП - это химическая характеристика способности вещества принимать и удерживать электроны. Выражается в вольтах (V). Вещества с положительным ОВП окисляют водород (отнимают от него электроны), вещества с отрицательным ОВП окисляются самим водородом. Самый низкий ОВП имеет начальное звено цепи, самый высокий - у кислорода, расположенного в конце цепочки переносчиков. Таким образом, передача водорода идет от более низкого к более высокому ОВП. Перенос водорода и электронов возможен только в одном направлении - в порядке возрастания их ОВП: от -0.32V у никотинамидных дегидрогеназ (первого компонента главной цепи МтО) до 0.82V у О2, обладающего самым высоким редокс-потенциалом.
На одной из стадий происходит разделение атомов водорода на Н+ и электроны. Протоны остаются временно в окружающей среде, а электроны идут дальше по цепи и в ее конце используются для активации О2. Кислород является конечным акцептором электронов.
O2 + 4e -----> 2O-2 (полное восстановление кислорода)
Все реакции, происходящие в дыхательной цепи, сопряжены. Переносчики водорода и электронов расположены в строгом порядке, в соответствии с величиной их редокс-потенциала.
В настоящее время различают три варианта дыхательных цепей: 1)
ГЛАВНАЯ (ПОЛНАЯ) ЦЕПЬ
УКОРОЧЕННАЯ (СОКРАЩЕННАЯ) ЦЕПЬ
МАКСИМАЛЬНО УКОРОЧЕННАЯ (МАКСИМАЛЬНО СОКРАЩЕННАЯ) ЦЕПЬ.
ГЛАВНАЯ ДЫХАТЕЛЬНАЯ ЦЕПЬ
Главная дыхательная цепь - это три мультиферментных комплекса, встроенных во внутреннюю мембрану митохондрии. Обозначаются они латинскими цифрами – I, III и IV.
Комплекс I – НАДН-KoQ-редуктаза, комплекс III – KoQH2-редуктаза, комплекс IV – цитохромоксидаза.Есть еще комплекс II – сукцинат-KoQ-редуктаза, но он существует отдельно от остальных комплексов и не входит в состав главной цепи.Эти комплексы транспортируют водород от никотинамидных дегидрогеназ на кислород воздуха, в результате чего создается электрохимический градиент концентраций протонов - +. Он возникает на внутренней мембране митохондрий между матриксом и межмембранным пространством. Его составляют два основных фактора:Электрический мембранный потенциал .Градиент pH (осмотический или химический градиент).+=-p
+ - положительная величина. Его можно выразить как в вольтах (V), так и в единицах энергии (кДж/моль). Изменение значения pH на одну единицу соответствует 0,06V или 5,7 кДж/моль.
Энергия + используется для следующих процессов:
Синтез АТФ.
Получение тепла (особенно важно для бурого жира и для мышечной ткани птиц).
Выполнение осмотической работы (транспорт фосфата в матрикс митохондрии).
Мышечная работа (в некоторых случаях).
Для человека наиболее важен синтез АТФ.
В полной цепи при окислении субстрата два атома водорода переносятся на НАД – кофермент никотинамидных дегидрогеназ.
Как видно из приведенной схемы, в полной цепи при передаче двух атомов водорода на кислород воздуха, в межмембранном пространстве оказываются 10 протонов, перенесенных сюда из матрикса.
Все переносчики встроены во внутреннюю мембрану митохондрий, кроме никотинамидных дегидрогенказ. Они составляют дыхательный ансамбль, тысячи таких ансамблей существуют в митохондрии и потребляют 90-95% кислорода, который используется клеткой. Два атома водорода отнимаются от субстрата и передаются на О2 с образованием Н2О. Разность потенциалов на двух концах полной цепи составляет 1.14V.
Окислительное фосфорилировавние. Синтез АТФ за счет энергии, которая выделяется в системе МтО, называется ОКИСЛИТЕЛЬНЫМ ФОСФОРИЛИРОВАНИЕМ. Основная роль АТФ - обеспечение энергией процесса синтеза АТФ.
Очень важной ф-ей цепи дыхательных катализаторов, связанных с внутренней мембраной митохондрий, наряду с переброской электронов от субстратов дыхания на кислород, является аккумуляция части освобвждающийся энергии в фосфатных связях высокоэргических соединений, главным образом АТФ. Процесс сопряжения тканевого дыхания и фосфолирования получил название окислительного фосфорилирования. Установлено, что уменьшение свободной энергии системы при переносе пары электронных эквивалентов от НАДН2 к молекулярному кислороду равно 220 кДж (52.7 ккал). В свою очередь величина стандартной свободной энергии рбразования АТФ из АДФи Н3РО4 (АДФ+Н3РО4=АТФ+Н2О)находится в пределах 30,2 кДж. Следовательно, уменьшение свободной энергии свободной энергии при переносе одной пары электронов от НАДН2 к О2 способно обеспечить синтез 36 молекул АТФ.
Для оценки эффективности работы системы МтО при окислении вычисляют КОЭФФИЦИЕНТ P/O. Он показывает, сколько молекул неорганического фосфата присоединилось к АДФ в расчете на один атом кислорода.
Для главной (полная) цепи Р/О=3 (10H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 3,3 (округляют до 3-х)), коэффициент полезного действия системы - 65%, для укороченной P/O=2 (6H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 2, для максимально укороченной P/O=1 (4H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 1.
Система МтО потребляет 90% кислорода, поступающего в клетку. При этом в сутки образуется 62 килограмма АТФ. Но в клетках организма содержится всего 20-30 граммов АТФ. Поэтому молекула АТФ в сутки гидролизуется и снова синтезируется в среднем 2500 раз (средняя продолжительность жизни молекулы АТФ - полминуты).

15,16.ВНЕМИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ
На его долю приходится 5-10% кислорода, поступающего в организм. АТФ во внемитохондриальном окислении никогда не образуется.
Существуют 2 типа внемитохондриального окисления:
I. ОКИСЛЕНИЕ ОКСИДАЗНОГО ТИПА.
Ферменты - ОКСИДАЗЫ. По строению являются металлофлавопротеинами. Содержат металлы с переменной валентностью - железо(Fe), медь(Cu), молибден(Mo). Находятся оксидазы в пероксисомах - особых образованиях эндоплазматического ретикулюма, а также в наружной мембране митохондрий. Отнимают водород от субстрата и передают его на кислород с образованием Н2О2 - перекиси водорода. Общая схема:
Оксидаз в клетке немного, и субстратов для них тоже мало. Эти ферменты обычно обладают широкой субстратной специфичностью и невысокой активностью.
1. МОНОАМИНОКСИДАЗЫ (МАО) - окисляют гормон адреналин и некоторые биогенные амины.
2. ДИАМИНОКСИДАЗЫ (ДАО) - окисляют гистамин и другие диамины и полиамины.
3. ОКСИДАЗА L-аминокислот
4. ОКСИДАЗА D-аминокислот
5. КСАНТИНОКСИДАЗА - окисляет пуриновые азотистые основания (аденин и гуанин) с участием воды.
БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ОКИСЛЕНИЯ ПО ОКСИДАЗНОМУ ТИПУ.
1. Окисляются трудноокисляемые циклические вещества.
2. Быстрая инактивация БАВ - биологически активных веществ.
3. Образующаяся Н2О2 оказывает бактерицидное действие - разрушает клеточные мембраны фагоцитированных бактериальных клеток.
II. ОКИСЛЕНИЕ ОКСИГЕНАЗНОГО ТИПА
Происходит на мембранах эндоплазматического ретикулума и во внутренней мембране митохондрий.
Ферменты - ОКСИГЕНАЗЫ. Они активируют молекулу кислорода, а затем внедряют один или два атома кислорода в молекулу окисляемого вещества.
Оксигеназы, включающие один атом кислорода в окисляемое вещество, называются МОНООКСИГЕНАЗАМИ (ГИДРОКСИЛАЗАМИ).
Оксигеназы, включающие два атома кислорода в окисляемое вещество, называются ДИОКСИГЕНАЗАМИ.
Оксигеназы работают в составе мультиферментного комплекса, встроенного (built-in) в мембрану.
Мультиферментный комплекс состоит из 3-х компонентов:
1. Флавиновые дегидрогеназы. Содержат ФАД. Наиболее обычный субстрат для них - НАДФН2.
2. Железо-серный белок. Содержит негеминовое железо с переменной валентностью.
3. Цитохром Р450. Его строение отличается от строения цитохромов цепи митоходриального окисления.
Мультиферментный комплекс формирует цепь переноса электронов и протонов, в конце ее происходит активация кислорода. Активированный кислород присоединяется к активному центру цитохрома Р450, и на него переносятся электроны, а затем этот кислород включается в молекулу субстрата.
АКТИВНЫЕ ФОРМЫ КИСЛОРОДА
Кислород – потенциально опасное вещество. Молекулярный кислород О2 и кислород в составе молекулы Н2О - стабильные соединения, химически инертные. Они стабильны, потому что внешняя электронная орбита укомплектована электронами. Полное восстановление кислорода происходит на заключительной стадии МтО. Химические соединения, в составе которых кислород имеет промежуточную степень окисления, имеют высокую реакционную способность и называются АКТИВНЫМИ ФОРМАМИ КИСЛОРОДА
Эти соединения образуются:
а) в монооксигеназных реакциях - супероксид-анион, который может отщепляться от активного центра цитохрома Р450.
б) в оксидазных реакциях - образуется пероксидный анион (присоединяя протоны, превращается в перекись водорода).
в) в дыхательной цепи МтО может происходить утечка электронов от каких-либо переносчиков - это явление наблюдается при реоксигенации ишемических тканей.
г) активные формы кислорода могут легко переходить друг в друга. Примеры таких переходов изображены на рисунках.
Донорами электронов могут являться металлы переменной валентности.
Наиболее химически активным соединением является гидроксильный радикал - сильнейший окислитель. Время его жизни очень короткое (1 миллиардная доля секунды), но за это время он мгновенно вступает в цепные окислительные реакции в месте своего образования.
Супероксиданион и перекись водорода - более стабильные вещества, могут диффундировать от места образования, проникать через мембраны клеток.
Гидроксильный радикал может вызывать неферментативное окисление аминокислотных остатков в белке (гистидина, цистеина, триптофана) - так могут инактивироваться многие ферменты, нарушается работа транспортных белков, происходит нарушение структуры азотистых оснований в нуклеиновых кислотах - страдает генетический аппарат клеток. Окисляются жирные кислоты в составе липидов клеточных мембран - нарушаются физико-химические свойства мембран - проницаемость, рецепторная функция, работа мембранных белков.
Особенностью реакций с участием гидроксильных радикалов является их цепной характер (гидроксильный радикал не исчезает, а передается).
Активные формы кислорода опасны для клетки, поэтому существуют защитные механизмы (например, в фагоцитах количество образовавшейся перекиси водорода увеличивается только в момент фагоцитоза). Инактивация активных форм кислорода в клетках происходит под действием АНТИОКСИДАНТНОЙ СИСТЕМЫ.

17. АНТИОКСИДАНТНАЯ СИСТЕМА.
1. ФЕРМЕНТАТИВНАЯ
a) КАТАЛАЗА - геминовый фермент, содержащий Fe3+, катализирует реакцию разрушения перекиси водорода. При этом образуется вода и молекулярный кислород.2Н2О2 ------> H2O + O2
Каталазы много в эритроцитах - там она защищает гем гемоглобина от окисления.
б) СУПЕРОКСИДДИСМУТАЗА (СОД) катализирует реакцию обезвреживания двух молекул супероксиданиона, превращая одну из них в молекулярный кислород, а другую - в перекись водорода (менее сильный окислитель, чем супероксиданион).О2. + О2.+ 2Н+ ------> H2O2 + O2
СОД работает в паре с каталазой и содержится во всех тканях.
в) ПЕРОКСИДАЗА.
Пероксидаза - геминовый фермент, восстанавливает перекись водорода до воды, но при этом обязательно идет окисление другого вещества, которое является восстановителем. В организме человека таким веществом является ГЛУТАТИОН - трипептид: гамма-глутамил-цистеил-глицин. Поэтому пероксидазу человеческого организма называют ГЛУТАТИОНПЕРОКСИДАЗА.
SH-группа цистеина, входящего в состав глутатиона, может отдавать всего 1 атом водорода, а для пероксидазной реакции необходимы 2 атома. Поэтому молекулы глутатиона работают парами.
Реакция, катализируемая глутатионпероксидазой:
2Н2О2 + 2Г-SH ------> H2O + Г-S-S-Г
Регенерация глутатиона идёт с участием НАДФН2, катализирует ее фермент глутатионредуктаза.
Г-S-S-Г + НАДФН2 ---------> 2Г-SH + НАДФ
Глутатион постоянно поддерживается в восстановленном состоянии в эритроцитах, где он служит для защиты гема гемоглобина от окисления.
2. НЕФЕРМЕНТАТИВНЫЕ КОМПОНЕНТЫ АНТИОКСИДАНТНОЙ СИСТЕМЫ
1. Витамины Е (токоферол) и А (ретинол), которые находятся в составе клеточных мембран.
2. Церулоплазмин - белок плазмы крови, который принимает участие в транспорте меди.
3. Мочевая кислота.
Механизм действия этих компонентов: они принимают неспаренные электроны от активных форм кислорода, при этом образуется радикал антиоксиданта, который малоактивен. Таким образом неферментативные компоненты антиоксидантной системы - это перехватчики неспаренных электронов.

18. УГЛЕВОДЫ.
Углеводы наряду с белками и липидами явл-ся важнейшими химическими соединениями живых организмов. В организме человека выполняют различные ф-и: прежде всего энергетическую, структурную и защитную. Также используются для синтеза н.к., они являются составными компонентами нуклеотидных коферментов, играющих исключительно важную роль в метаболизме живых существ. Впервые термин углеводы был преложен Шмидтом. В то время предполагали, что все углеводы имеют общую формулу Сm(H2O)n. Отсюда и название углеводы. В дальнейшем оказалось, что ряд соединений, относящихся к углеводам, содержат Н2 и О2 в несколько иной пропорции чем указано в общей ф-ле (например С5Н10О4).
Классификация. Углеводы делятся на моно-, олиго-, и полисахариды. Моносахариды, в свою очередь, делятся на Альдозы и кетозы. Можно рассматривать как производные многоатомных спиртов, содержащих карбонильную гр-у. Если она находится в конце цепи, то моносахарид представляет собой альдегид и наз-ся альдозой; при любом другом расположении этой гр-пы моносахарид является кетоном и наз-ся кетозой. Полисахариды на гомо- (состоят из моносахаридных единиц только одного типа), и гетерополисахариды (хар-но наличие 2-х и более типов мономерных звеньев). Олигосахариды – углеводы, молекулы которых содержат от 2-х до 8-10 остатков моносахаридов, соединенных гликозидными связями.

19. Переваривание
Углеводы человек получает с пищей в основном в виде полисахаридов (растительного крахмала, клетчатки (целлюлозы), меньше - гликогена), в меньших количествах в виде дисахаридов, и совсем немного - моносахаридов. Переваривание углеводов в желудочно-кишечном тракте (ЖКТ) человека не относится к метаболизму, поскольку желудочно-кишечный тракт рассматривается как часть внешней среды.
Переваривание начинается в ротовой полости. Слюнными железами выделяется фермент \"-амилаза слюны\". Этот фермент способен расщеплять -1,4-гликозидные связи в молекулах растительного крахмала (смесь полисахаридов амилозы и амилопектина) и гликогена (животного крахмала).
Потенциально -амилаза слюны в ротовой полости способна расщепить пищевой крахмал или гликоген до дисахаридов мальтозы и изомальтозы. Это можно подтвердить, подержав длительное время во рту кусочек несладкого хлеба или булки. Через некоторое время можно почувствовать сладкий вкус, придаваемый образовавшейся мальтозой. Но в реальных условиях пища находится во ротовой полости не слишком длительное время и мальтоза не образуется. В этом случае -амилаза слюны успевает расщепить только некоторые 1,4--гликозидные связи, и образуются промежуточные продукты расщепления - декстрины, представляющие из себя полисахаридные фрагменты различной протяженности. В зависимости от длины их молекулы они могут называться по-разному. Например, более длинные молекулы иногда называют эритродекстринами, а более короткие относятся к мальтодекстринам.
Затем полупереваренные полисахариды, находящиеся в составе пищевого комка, проглатываются и попадают в желудок. Здесь эффективного переваривания углеводов не происходит, т.к. кислая среда полости желудка далека от pH-оптимума амилазы, и поэтому здесь фермент теряет свою активность. Теоретически переваривание может продолжаться только внутри пищевого комка, и, лишь при том условии, что пищевая масса интенсивно не перемешивается с желудочным соком.
Переваривание углеводов возобновляется при поступлении пищевых масс из желудка в тонкий кишечник. Поступающий оттуда кислый химус нейтрализуется щелочными солями (бикарбонатами), поступающими в 12-перстную кишку вместе с соком поджелудочной железы. К тому же, в стенке этой кишки есть железы, тоже вырабатываюшие бикарбонаты. Таким образом, среда в просвете 12-перстной кишки имеет слабощелочную реакцию, близкую к рН-оптимуму панкреатической -амилазы.
Панкреатическая -амилаза завершает расщепление полисахаридов и олигосахаридов до дисахарида мальтозы.
Дисахарид мальтоза и остальные дисахариды, поступившие с пищей расщепляются ферментами пристеночного переваривания углеводов до моносахаридов. Эти ферменты выделяются слизистой оболочкой кишечника в составе кишечного сока.

20.
В сутки взрослый человек при сбалансированном питании получает около 500 граммов углеводов. После всасывания глюкоза по системе воротной вены поступает в печень. В печени основное количество глюкозы откладывается, запасается в виде гликогена, а остальная глюкоза идёт в общий кровоток для питания других клеток. Так происходит после принятия пищи на высоте пищеварения.
В состоянии \"натощак\" (вне приёма пищи) гликоген в печени постепенно распадается до глюкозы, и глюкоза из печени уходит в общий кровоток к другим тканям.
Эти механизмы поддерживают концентрацию глюкозы в крови на постоянном уровне: 3.9 - 6.1 ммоль/л.
Под действием инсулина глюкоза проникает в клетки тканей. Что же происходит с глюкозой в клетке?
Первая реакция, в которую вступает глюкоза в клетке, является единственной. Это реакция фосфорилирования глюкозы за счёт АТФ. Фермент, катализирующий эту реакцию, есть в любой клетке. Он называется гексокиназа (ГК).
Биологический смысл гексокиназной реакции:
1. Сделать молекулу глюкозы более способной к химическим реакциям, ослабить в ней химические связи, дестабилизировать её (\"расшатать\").
2. Связать, задержать глюкозу в клетке, чтобы она не смогла выйти обратно в кровь (глюкозо-6-фосфат не способен проходить через клеточную мембрану).
Чтобы связанная молекула могла выйти из клетки, глюкозо-6-фосфат должен превратиться обратно в глюкозу. Фермент, катализирующий обратную реакцию (превращение глюкозо-6-фосфата обратно в глюкозу), называется глюкозо-6-фосфатаза. Он гидролизует глюкозо-6-фосфат до глюкозы и Н3РО4 (Фн), то есть катализирует обходной обратный путь гексокиназной реакции. Глюкозо-6-фосфатаза есть в печени, почках и слизистой оболочке кишечника.
3. Гексокиназа - это ключевой фермент всего метаболизма глюкозы. Он лимитирует (ограничивает) скорость всех путей метаболизма глюкозы в клетке, то есть Vmax гексокиназы меньше, чем Vmax любого другого фермента метаболизма глюкозы в клетке. У гексокиназы очень маленькая КМ (примерно в 500 раз меньше, чем нормальная концентрация глюкозы в крови), поэтому гексокиназа всегда работает с максимальной скоростью.
Только в печени есть ещё один фермент, катализирующий реакцию превращения глюкозы в глюкозо-6-фосфат. Это изофермент гексокиназы - глюкокиназа. У него КМ=20ммоль/л. Поэтому обычно он работает с 1/4Vmax. Но \"на высоте пищеварения\", когда концентрация глюкозы в воротной вене во много раз возрастает, глюкокиназа работает очень интенсивно, но Vmax всё равно никогда не достигается. Следовательно, утилизация глюкозы клетками печени \"на высоте пищеварения\" возрастает при подключении дополнительного пути метаболизма (работа глюкокиназы).

21.СИНТЕЗ И РАСПАД ГЛИКОГЕНА.
Синтез гликогена протекает не во всех тканях, а только в печени, мышцах и в лейкоцитах.
После образования глюкозо-6-фосфата (гексокиназная реакция) происходит внутримолекулярный перенос остатка фосфорной кислоты из 6-го положения в 1-е. При этом образуется глюкозо-1-фосфат:
После изомеризации глюкозо-6-фосфата в глюкозо-1-фосфат протекает дополнительная активация глюкозного фрагмента. При этом расходуется 1 молекула УТФ, что эквивалентно расходованию 1-й молекулы АТФ. В результате образуется активированная форма - УДФ-глюкоза:
Затем с УДФ глюкозный остаток переносится на молекулу гликогена. Удлинение цепи гликогена катализирует фермент гликогенсинтетаза. Таким образом, цепь гликогена становится на 1 глюкозный фрагмент длиннее. Гликоген, в отличие от растительного крахмала, более сильно разветвлен. Для формирования ответвлений существует специальный фермент, который называется \"гликогенветвящий фермент\" (стр.242 учебника).
Молекула гликогена синтезируется не с \"нуля\", а происходит постепенное удлинение уже имеющегося кусочка цепи: \"затравки\". И при распаде гликогена никогда не происходит полного разрушения его молекул.
Для включения одного остатка глюкозы в молекулу гликогена клетка расходует 2 молекулы АТФ. При распаде гликогена эта АТФ не регенерирует, а освобождается только Фн (неорганический фосфат).
Ключевым ферментом синтеза гликогена является гликогенсинтаза. Это \"пункт вторичного контроля\". Ее Vmax больше, чем у гексокиназы, но меньше, чем у любого другого фермента на пути синтеза гликогена.
Регуляция гликогенсинтазы: она активируется избытком глюкозо-6-фосфата. Поэтому если глюкозо-6-фосфат другими путями утилизируется медленно, то возрастание его концентрации приводит к увеличению скорости синтеза гликогена.
Реакция, катализируемая гликогенсинтазой, необратима.
В определенных условиях гликоген способен распадаться. Для этого существует свой обходной обратный путь. Его ключевым ферментом является гликогенфосфорилаза (фосфорилаза). Этот фермент расщепляет молекулу гликогена с участием Фн до глюкозо-1-фосфата и гликогена, укороченного на один глюкозный фрагмент:(С6Н10О5)n + H3PO4 ----> (C6H10O5)n-1 + глюкозо-1-фосфат
Фосфорилаза - ключевой (то есть лимитирующий и регуляторный) фермент распада гликогена.
Регуляция гликогенфосфорилазы: угнетается избытком АТФ, активируется избытком АДФ.

22.Аэробный распад глюкозы. Гл-а является ключевым в-ом обмена в организме. Все остальные в-ва на разных стадиях втягиваются в процессы ее превращения. Дальнейшее расщепление органических в-в рассматривается на примере обмена глюкозы. Процесс гликолиза протекает в цитоплазме. Глюкоза расщепляется до 2-х молекул ПВК, которые в зависимости от типа клеток могут превращаться в молочную кислоту, спирт и др. при этом выделяется энергия частично запасается в 2-х молекулах АТФ, а частично расходуется в виде тепла. Бескислородные процессы наз-ся брожением.
С6Н12О6—--2С3Н4О3(пвк)+4Н=2С3Н6О3 (молочнокислое брожение).
В результате ступенчатого расщепления глюкозы образуется 2 молекулы ПВК. При этом ещё освобождается 4 атома водорода, которые соединяются с переносчиком НАД+, и образуется 2НАД*Н+Н+. Дальнейшая судьба ПВК зависит от кислорода. В анаэробных условиях ПВК превращается в молочную к-ту и этанол, с участием тех же молекул 2НАД*Н+Н+, которые возвращают водород. Если же процесс идет в аэробных условиях то ПВК и 2НАД*Н+Н+ вступают в р-ю биологического окисления.

23.Аэробный распад глюкозы. Биологическое окисление протекает в митохондриях. ПВК поступает в митохондрии где преобразуется в уксусную к-ту соединяется с ферментом переносчиком и входит в серию циклических р-й – ЦТК. В результате эти р-й при участии кислорода образуются СО2 и Н2О. А на кристах митохондрий за счет выделяющийся энергии синтезируется 36 молекул АТФ.
Р-и кислородного этапа: 2С3Н4О3 + 6О2 + 4Н ---6СО2 + Н2О ---36 молекул АТФ. Таким образом при расщеплении глюкозы на 2-х этапах образуется суммарно 38 молекул АТФ, ричем основная часть при кислородном окислении. Процесс биологического окисления наз-ся дыханием.
Эффект Пастера - снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода. О2 тормозит анаэробный гликолиз. Переход в присутствии О2 от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на более экономный путь получения энергии. Молекулярный механизм эффекта заключается в том, что в конкуренции м-у системами дыхания и гликолиза за АДФ, используемый для образования АТФ. В аэробных условиях гораздо успешнее чем в анаэробных происходит генерация АТФ, а т.ж. удаление восстановленного НАД (НАДН2). Т.е. уменьшение в присутствии О2 АДФ и соответствующее увеличение АТФ ведут к подавлению анаэробного гликолиза.

24.Пентозный цикл. Совокупность большого количества обратимых реакций. Каждая из них - это перенос 2-х или 3-х углеродного фрагмента с одного моносахарида на другой. Между моносахаридами происходит взаимный обмен частями своих молекул. При этом из пентозофосфатов, вступающих в реакцию, образуются моносахариды с разным числом углеродных атомов. Это триозы (например, фосфоглицериновый альдегид (ФГА)), тетрозы, гексозы, гептозы (их формулы знать необязательно, но нужно знать схему реакций.
Реакции неокислительного этапа катализируются ферментами трансальдолазами и транскетолазами. В состав кофермента транскетолаз входит витамин В1 (тиамин).
В результате 6 молекул рибозо-5-фосфата превращаются в 5 молекул глюкозо-6-фосфата.
1. Обеспечивает завершение 1-го этапа (утилизирует продукты 1-го этапа).
2. Является источником моносахаридов с разным числом углеродных атомов. Это строительный материал для разных синтезов, в том числе для синтезов различных олигосахаридов, которые входят в состав различных клеточных рецепторов.
3. Образующийся ФГА является точкой сопряжения между ГМФ-путем и некоторыми другими путями метаболизма. Например: ФГА может восстанавливаться до фосфоглицерина, который нужен для синтеза жиров. Фосфоглицерин может окисляться до ФГА. ФГА также образуется в ГБФ-пути, являясь общим метаболитом.
Значит, ФГА, образующийся в ГМФ-пути, может быть использован в ГБФ-пути (ГЕКСОЗОБИСФОСФАТНЫЙ ПУТЬ РАСПАДА УГЛЕВОДОВ).
Окислительный этап заключается в 2-х реакциях окисления гексозофосфата. Обе реакции не требуют участия кислорода. Н2 переносится на НАДФ. Затем отщепляется СО2. Образуется молекула пентозо-фосфата, НАДФН2 и молекула СО2.
БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ:
1. Происходит прямое окисление глюкозо-фосфата без участия кислорода.
2. Этот этап является одним из главных источников НАДФН2 для клетки.
Образуется этот НАДФН2 в цитоплазме, поэтому он не передает свой водород по системе митохондриального окисления на кислород и АТФ не образуется. Он отдает свой водород на синтез жирных кислот, холестерина и других стероидов, а также на монооксигеназные реакции 3. На 1-м этапе ГМФ-пути образуется СО2 - один из конечных продуктов метаболизма без участия кислорода.
4. Образуются пентозы. Эти пентозы являются строительным материалом для синтеза нуклеотидов, коферментов и некоторых других веществ.

25. ГЛИКОНЕОГЕНЕЗ - это образование углеводов (например, глюкозы или гликогена) из веществ, имеющих неуглеводное происхождение.
Некоторые промежуточные метаболиты ГБФ-пути (ГЕКСОЗОБИСФОСФАТНЫЙ ПУТЬ РАСПАДА УГЛЕВОДОВ) могут образоваться из веществ других классов (не из углеводов): например, из аминокислот, липидов.
Из пирувата синтезируется глюкоза (в печени) или гликоген (в печени и в мышцах). Для обходных реакций необратимых стадий 1-го этапа ГБФ-пути существуют специальные ферменты: для 1-й - глюкозо-6-фосфатаза (только в печени!), для 3-й - фруктозо-1,6-бисфосфатаза, и для 10-й реакции - пируваткарбоксилаза. Ключевым ферментом глюконеогенеза из пирувата является пируваткарбоксилаза. В состав его кофермента входит витамин H - биотин. Этот фермент обычно малоактивен, но он сильно активируется даже при небольшом накоплении АцКоА в цитоплазме. Тогда обходной обратный путь 10-й стадии и весь процесс синтеза углеводов из ПВК может протекать быстрее, чем их распад.
Гликолиз в мышцах. Рассмотрим регуляцию на примере мышечной ткани, потому что именно в этой ткани наблюдается очень быстрый и огромный перепад в расходовании энергии АТФ (от состояния покоя к интенсивной мышечной работе и обратно к состоянию покоя).1. ИНТЕНСИВНАЯ МЫШЕЧНАЯ РАБОТА.
Резко падает [АТФ] и возрастает [АДФ]. Это приводит к активации ключевых ферментов ЦТК цитратсинтазы и изоцитратдегидрогеназы. ЦТК работает интенсивнее, что приводит к снижению концентраций его начальных продуктов: Ацетил-КоА и цитрата. В итоге ацетил-КоА прекращает активировать ключевой фермент гликонеогенеза - пируваткарбоксилазу - то есть синтез углеводов резко замедляется. Снижение концентраций цитрата и АТФ приводит к прекращению их угнетающего действия на ФФК, а накопление АДФ еще и активирует ФФК - 3-я стадия 1-го этапа ГБФ-пути идет быстрее и понижается концентрация метаболитов-предшественников, в том числе глюкозо-6-фосфата. При этом снимается тормозящее действие глюкозо-6-фосфата на гексокиназу (поэтому глюкоза утилизируется быстрее) и его активирующее действие на гликогенсинтазу (прекращается синтез гликогена). Уменьшение [АТФ] снимает ее ингибирующее действие на фосфорилазу (ключевой фермент распада гликогена), а накопление АДФ активирует этот фермент - поэтому усиливается распад гликогена и его продукты окисляются в ГБФ-пути.
Эти механизмы приводят к увеличению синтеза АТФ.
2. ПЕРЕХОД ОТ ИНТЕНСИВНОЙ МЫШЕЧНОЙ РАБОТЫ К СОСТОЯНИЮ ПОКОЯ.
Действуют всё те же механизмы, но в обратном направлении. Это приводит к уменьшению продукции АТФ

26. ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ МЕТАБОЛИЗМА УГЛЕВОДОВ ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ЭНЕРГЕТИЧЕСКОГО МЕТАБОЛИЗМА.

Действие гормонов, влияющих на энергетический метаболизм можно увидеть при определении некоторых биохимических показателей. Например, концентрации глюкозы в крови. Гормоны делят на:
1. Повышающие уровень глюкозы в крови;
2. Понижающие уровень глюкозы в крови.
Ко второй группе относится только ИНСУЛИН.Также гормоны можно разделить на ГОРМОНЫ ПРЯМОГО ДЕЙСТВИЯ на энергетический метаболизм и ГОРМОНЫ КОСВЕННОГО ДЕЙСТВИЯ.
Гормоны прямого действия.
ИНСУЛИН
Основные механизмы действия инсулина:
1. Инсулин повышает проницаемость плазматических мембран для глюкозы. Этот эффект инсулина является главным лимитирующим звеном метаболизма углеводов в клетках.
2. Инсулин снимает тормозящее действие глюкокортикостероидов на гексокиназу.
3. На генетическом уровне инсулин стимулирует биосинтез ферментов метаболизма углеводов, в том числе ключевых ферментов.
4. Инсулин в клетках жировой ткани ингибирует триглицеридлипазу - ключевой фермент распада жиров.
Регуляция секреции инсулина в кровь происходит с участием нейро-рефлекторных механизмов. В стенках кровеносных сосудов есть особые хеморецепторы, чувствительные к глюкозе. Повышение концентрации глюкозы в крови вызывает рефлекторную секркцию инсулина в кровь, глюкоза проникает в клетки и ее концентрация в крови снижается.
Остальные гормоны вызывают повышение концентрации глюкозы в крови.
ГЛЮКАГОН.
Относится к белково-пептидным гормонам. Обладает мембранным типом взаимодействия с клеткой-мишенью. Эффект оказывает через аденилатциклазную систему.
1. Вызывает повышение активности гликоген-фосфорилазы. В результате ускоряется распад гликогена. Так как глюкагон оказывает эффект только в печени то можно сказать, что он \"гонит глюкозу из печени\".
2. Понижает активность гликоген-синтетазы, замедляя синтез гликогена.
3. Активирует липазу в жировых депо.
АДРЕНАЛИН.
Имеет рецепторы во многих тканях, а механизмы действия у него такие же, как у глюкагона.
1. Ускоряет распад гликогена.
2. Замедляет синтез гликогена.
3. Ускоряет липолиз.
ГЛЮКОКОРТИКОСТЕРОИДЫ (ГКС).
Относятся к стероидным гормонам, поэтому обладают внутриклеточным типом взаимодействия с клеткой-мишенью. Проникая в клетку-мишень, они взаимодействуют с клеточным рецептором и обладают следующими эффектами:
1. Ингибируют гексокиназу - таким образом они замедляют утилизацию глюкозы. В результате концентрация глюкозы в крови возрастает.
2. Данные гормоны обеспечивают процесс гликонеогенеза субстратами.
3. На генетическом уровне усиливают биосинтез ферментов катаболизма белков.

27.Сахарный диабет. В регуляции гликолиза и гликонеогенеза большую роль играет инсулин. При его недостатке развивается сахарный диабет. Повышается концентрация глюкозы в крови (гипегликемия).Появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. При этом мышечная ткань утрачивает способность утилизировать глюкозу крови. В печени при снижении общих биосинтетических процессах наблюдается усиленный синтез ферментов гликонеогенеза. При введение инсулина происходит коррекция метаболических сдвигов: нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение м-у гликолизом и гликонеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ф-ов гликолиза (гексокиназы, фосфофруктокеназы и пируваткиназы).

28. ЛИПИДЫ - органические вещества, характерные для живых организмов, нерастворимые в воде, но растворимые в органических растворителях и друг в друге.
Классификация: липиды делятся на: жиры, фосфолипиды, гликолипиды, минорные липиды и стероиды, которые в свою очередь делятся на стерины (спирты. Наиболее важен холистерин) и стериды(эфиры стеринов и в.ж.к.).
Группы липидов отличаются по степени гидрофобности. Фосфолипиды и гликолипиды являются полярными липидами.
Холестерин занимает промежуточное положение между полярными и абсолютно гидрофобными липидами.
Абсолютно гидрофобными являются триглицериды и эфиры холестерина.
Большинство липидов (кроме стеринов и некоторых минорных липидов) содержат высшие жирные кислоты (ВЖК).
В состав мембран входят только ФОСФОЛИПИДЫ (ФЛ), ГЛИКОЛИПИДЫ (ГЛ) и ХОЛЕСТЕРИН (ХС).
1. ЭНЕРГЕТИЧЕСКАЯ.
В отличие от углеводов жиры составляют энергетический резерв организма. Преимущество жира в качестве энергетического резерва заключается в том, что жиры являются более восстановленными веществами по сравнению с углеводами (в молекулах углеводов при каждом углеродном атоме есть кислород – группы “–CHOH-“; у жира имеются длинные углеводородные радикалы, в которых преобладают группы “-CH2-“ - в них нет кислорода). От жира можно отнять больше водорода, который затем проходит по цепи митохондриального окисления с образованием АТФ.
Калорийность углеводов и белков: ~ 4 ккал/грамм.
Калорийность жира: ~ 9 ккал/грамм.
Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем.
В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.
2.ЗАЩИТНАЯ.
Жировая ткань: а) защищает органы от механических повреждений. б) участвует в терморегуляции.
Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

29. ЖИРНЫЕ КИСЛОТЫ
Кислота называется жирной, если число углеродных атомов в ее молекуле больше четырех. Преобладаютдлинноцепочечные жирные кислоты (число атомов углерода 16 и выше). Количество углеродных атомов и двойных связей обозначается двойным индексом. Например: С18:1 (9-10). В данном случае 18 – число атомов углерода и 1 – количество двойных связей. В скобках указывается местоположение двойных связей (по номерам углеродных атомов).
Студенты должны знать количество углеродных атомов и двойных связей в молекулах следующих жирных кислот:
С16:0 - пальмитиновая,С18:0 - стеариновая,С18:1 – олеиновая (9:10),С18:2 – линолевая (9-10,12-13), С18:3 - линоленовая (9-10, 12-13, 15-16),С20:4 - арахидоновая (5-6, 8-9, 12-13, 15-16).
Жирные кислоты, имеющие двойную связь в положении 3, обладают очень выраженным антиатеросклеротическим действием (линоленовая). Особенно много 3-содержащих жирных кислот находится в рыбьем жире и других морепродуктах. В организме человека такие жирные кислоты не синтезируются.
Жирные кислоты, входящие в состав организма человека, имеют общие черты строения:Чётное число атомов углерода.
Линейная (неразветвлённая) углеродная цепь.
Полиненасыщенные жирные кислоты имеют ТОЛЬКО ИЗОЛИРОВАННЫЕ двойные связи (между соседними двойными связями не меньше двух одинарных).
Двойные связи имеют только цис-конфигурацию.
По количеству двойных связей жирные кислоты можно разделить на НАСЫЩЕННЫЕ (нет двойных связей), МОНОНЕНАСЫЩЕННЫЕ (есть одна двойная связь) и ПОЛИНЕНАСЫЩЕННЫЕ (две или более двойных связей).
Свободные жирные кислоты встречаются в очень небольшом количестве. В основном они находятся в составе других липидов. При этом они связаны с другими компонентами липидов сложноэфирной связью (эстерифицированы).

30. Химическое название жиров - ацилглицерины, то есть жиры. Это сложные эфиры глицерина и высших жирных кислот. \"Ацил-\" - это означает \"остаток жирных кислот\" (не путать с \"ацетил-\" - остатком уксусной кислоты). В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ.
В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).
Основную массу природных нейтральных жиров составляют триглицериды. Ж.К. в триглицеридах могут быть насыщенными и не. Чаще встречаются пальмитиновая, стеариновая, олииновая. Если все три кислотные радикалы принадлежат одной к-те, то такие триглицериды наз-ся простыми, если разными, то смешанные. Ж.К. входящие в с-в триглицеридов практически определяют их физико-химические св-ва. Так t плавления их повышается с увеличением числа и длины остатков насыщенных жирных к-т.
Глицериды способны вступать во все химические р-и, свойственные сложным эфиром. Наибольшее значение имеет р-я омыления, в результате которой из триглециридов образуется глицерин и жирные к-ты. Омыление жира может происходить как при ферментативном гидролизе, так и при действии кислот или щелочей.

31,34.Основу мембран составляют ФОСФОЛИПИДЫ - это липиды, содержащие ФОСФАТНЫЙ ОСТАТОК.
Состоят из четырех компонентов:
1) спирт
2) жирные кислоты
3) фосфат
4) полярная группировка (Если это СЕРИН, то глицерофосфолипид называют ФОСФАТИДИЛСЕРИН, если ХОЛИН, то глицерофосфолипид называют ФОСФАТИДИЛХОЛИН, если ЭТАНОЛАМИН, то глицерофосфолипид называют ФОСФАТИДИЛЭТАНОЛАМИН, если ИНОЗИТ, то глицерофосфолипид называют ФОСФАТИДИЛИНОЗИТ).
В состав фосфолипидов могут входить 2 спирта: глицерин (глицерофосфолипиды) и сфингозин (сфингофосфолипиды, сфингомиелины). Все компоненты соединены эфирными связями. Кроме разделения на основе содержания той или иной полярной группы, их делят на основе содержащегося в них спирта:
1. ГЛИЦЕРОФОСФОЛИПИДЫ (ГФЛ) - содержат спирт глицерин.
Все они относятся к L-ряду. Есть асимметрический углеродный атом (на рисунке обозначен звездочкой). Полярная группировка может быть представлена аминокислотой серином (фосфатидилсерин), холином (фосфатидилхолин, другое название – лецитин), этаноламином (фосфатидилэтаноламин), инозитолом (фосфатидилинозитол), глицерином (полиглицерофосфатиды).
В природных фосфолипидах R1 и R2 - разные. R1 - насыщенная жирная кислота, R2.- ненасыщенная жирная кислота. Однако, есть и исключения: основным липидным компонентом легочного сурфактанта является ГФЛ, у которого и R1, и R2 – радикалы пальмитиновой кислоты, а полярная группировка – холин.
2. СФИНГОФОСФОЛИПИДЫ (СФЛ) - содержат спирт сфингозин: СФИНГОМИЕЛИНЫ.
Сфингофосфолипиды бывают различными по строению, но имеют общие черты. Молекула сфингофосфолипида содержит сфингозин, жирную кислоту, фосфорную кислоту и полярную группировку. Сфингозин - это 2-хатомный непредельный аминоспирт.
Жирная кислота присоединена пептидной связью к аминогруппе сфингозина.
Фосфолипиды - это амфифильные вещества. Расположение гидрофильных и гидрофобных участков особое. Гидрофильные участки (остаток фосфорной кислоты и полярная группировка) образуют \"головку\", а гидрофобные радикалы жирных кислот (R1 и R2) образуют \"хвосты\".

35.ГЛИКОЛИПИДЫ
. Состоят из сфингозина, жирной кислоты и молекулы какого-либо углевода. Если в формулу СФЛ вместо фосфорной кислоты поставить какой-нибудь углевод, то получим формулу ГЛ. Гликолипиды тоже имеют гидрофильную \"головку\" и 2 гидрофобных \"хвоста\".
Гликолипиды классифицируют в зависимости от строения углеводного компонента.
Различают 2 группы гликолипидов:
1. ЦЕРЕБРОЗИДЫ. В качестве углеводного компонента содержат какой-либо моносахарид (глюкоза, галактоза), либо дисахарид, или нейтральный небольшой олигосахарид.
2. ГАНГЛИОЗИДЫ. Углеводным компонентом является олигосахарид, состоящий из разных мономеров, как самих моносахаридов, так и их производных. Этот олигосахарид обязательно кислый, в его состав обязательно входит сиаловая кислота. Благодаря определенной последовательности мономеров, олигосахариды в составе ганглиозида придают молекуле выраженные антигенные свойства.

36. Холестерин взаимодействует с гидрофобными хвостами полярных молекул и ограничивает скорость диффузии липидов. Поэтому холестерин называют стабилизатором биологических мембран. Компоненты мембран не только движутся в пространстве, но и постоянно обновляются. Их место занимают новые молекулы.
Липоиды синтезируются на мембранах эндоплазматического ретикулума. Наблюдается постоянное передвижение липоидов от мембран ЭПС к другим мембранам.
СИНТЕЗ ХОЛЕСТЕРИНА
Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин - эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина - ГМГ-редуктаза (бета-гидрокси, бета-метил, глутарил-КоА редуктаза). Этот фермент ингибируется по принципу отрицательной обратной связи конечным продуктом - холестерином.
Пищевой холестерин транспортируется хиломикронами и попадает в печень. Поэтому печень является для тканей источником и пищевого холестерина (попавшего туда в составе хиломикронов), и эндогенного холестерина.В печени синтезируются и затем попадают в кровь ЛОНП - липопротеины очень низкой плотности (состоят на 75% из холестерина), а также ЛНП - липопротеины низкой плотности(в их составе есть апобелок апоВ100.
Почти во всех клетках имеются рецепторы для апоВ100. Поэтому ЛНП фиксируются на поверхности клеток. При этом наблюдается переход холестерина в клеточные мембраны. Поэтому ЛНП способны снабжать холестерином клетки тканей.
Помимо этого, происходит и освобождение холестерина из тканей и транспорт его в печень. Транспортируют холестерин из тканей в печень липопротеины высокой плотности (ЛВП). Они содержат очень мало липидов и много белка. Синтез ЛВП протекает в печени. Частицы ЛВП имеют форму диска, и в их составе находятся апобелки апоА, апоС и апоЕ. В кровеносном русле к ЛНП присоединяется белок-фермент лецитинхолестеринацилтрансфераза (ЛХАТ)

Нарушение соотношения между количеством ЛНП, ЛОНП и ЛВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозу. Поэтому ЛНП называют атерогенными липопротеинами, а ЛВП - антиатерогенными липопротеинами. При наследственном дефиците ЛВП наблюдаются ранние формы атеросклероза.

37. Переваривание экзогенного жира обязательно требует предварительного эмульгирования. Некоторые пищевые жиры поступают в организм уже в эмульгированной форме, например молочный жир. Для остальных необходимо эмульгирование с помощью специальных веществ - эмульгаторов (детергентов).
Эмульгаторы – вещества амфифильной природы. Они снижают поверхностное натяжение и стабилизируют эмульсию Общее в строении эмульгаторов: наличие гидрофильных и гидрофобных участков. Гидрофильным участком молекула эмульгатора растворяется в воде, гидрофобным - в жире. Благодаря этому создается большая площадь контакта жира с водной фазой, в которой находится фермент. Белки могут выступать в роли эмульгаторов. Грудным детям эмульгаторы не нужны: они получают уже эмульгированный жир молока.
В организме человека эмульгаторами являются ЖЕЛЧНЫЕ КИСЛОТЫ. Это вещества стероидной природы. Синтезируются в печени из холестерина путем окисления по монооксигеназному типу в две первичные желчные кислоты: ХОЛЕВУЮ и ХЕНОДЕЗОКСИХОЛЕВУЮ, которые затем связываются с аминокислотными остатками глицина и таурина. Так образуются конъюгированные желчные кислоты - ГЛИКОХОЛЕВАЯ (в которой гидрофильный участок представлен остатком глицина) и ТАУРОХОЛЕВАЯ (в ней гидрофильный участок представлен таурином). Гидрофобным компонентом всех желчных кислот является производное холестерина. Образуются и другие желчные кислоты – их разнообразие достаточно велико. В составе желчи желчные кислоты поступают в 12-перстную кишку и аллостерически активируют панкреатическую липазу.
Собственно переваривание жиров – это гидролиз сложноэфирных связей. Существует три фермента:
Язычная липаза. Вырабатывается клетками слизистой оболочки задней части языка. Действие этого фермента проявляется только в желудке (раньше считали, что это – желудочная липаза). Язычная липаза может переваривать уже эмульгированный жир. Ее pH-оптимум – 4-5. Поэтому в желудке взрослого человека язычная липаза неактивна. Реально жиры перевариваются язычной липазой только у младенцев.У взрослых людей переваривание жира идет только в кишечнике по схеме: «выделение желчи эмульгирование жира действие панкреатической липазы».
Панкреатическая липаза. Сам по себе этот фермент обладает очень низкой активностью. Но в поджелудочной железе вырабатывается белок, который, попадая в кишечник, способен активировать панкреатическую липазу. Название этого белка – «колипаза». Колипаза вырабатывается в виде неактивного предшественника – проколипазы, который активируется трипсином в кишечнике. Колипаза не является классическим активатором, она лишь связывает субстрат и приближает его к активному центру липазы.
Образовавшиеся жирные кислоты и моноацилглицерины могут всасываться в кишечную стенку.
Эстераза липидов. Под действием этого фермента часть моноацилглицеринов может подвергаться гидролизу с образованием глицерина и жирных кислот.
Таким образом, продуктами переваривания жира являются глицерин, жирные кислоты и моноацилглицерины. Всасываются продукты переваривания путем предварительного образования смешанных МИЦЕЛЛ с желчными кислотами. Итак, желчные кислоты выполняют 2 функции: эмульгирование жира и всасывание жирных кислот.
Мицеллы попадают в энтероциты. Там из компонентов мицелл снова образуются триацилглицерины, а желчные кислоты по системе воротной вены возвращаются в печень, и могут снова поступать в желчь. Этот процесс называется рециркуляцией желчных кислот. Процесс синтеза жира в энтероцитах из компонентов мицелл называется РЕСИНТЕЗОМ жира. В процессе ресинтеза происходит образование жиров, близких по составу к жирам организма. Затем из ресинтезированного жира, других липидов и апобелков формируются липопротеиновые частицы: ХИЛОМИКРОНЫ.
Хиломикрон построен так же, как и остальные липопротеины (смотрите стр.2). Это небольшая жировая капля: в центре ее находятся триацилглицерины, являющиеся преобладающим компонентом частицы и составляет 80% массы хиломикрона. По периферии располагаются слои фосфолипидов (8% массы) и слои апобелков (2% массы), два из которых – А и В48 синтезируются на рибосомах энтероцита, которые чередуются. Остальные 10% массы приходятся на холестерин и его эфиры. Поверхность хиломикрона гидрофильна: гидрофильные части белков и фосфолипидов находятся на поверхности частицы.Размеры хиломикрона настолько велики, что он не может пройти через поры, имеющиеся в стенках кровеносных капилляров, путем экзоцитоза. Поэтому путем экзоцитоза хиломикроны поступают в лимфу. Через нее они попадают в большой круг кровообращения, минуя печень. После употребления в пищу жира в крови наблюдается повышенное содержание хиломикронов. В кровеносном русле происходит перенос на хиломикроны ещё двух апобелков: \"С\" и \"Е\". Стенки капилляров жировой, мышечной и других клеток, а также мембраны таких клеток содержат фермент – липопротеинлипазу. Он гидролизует триацилглицерины хиломикрона. АпоС является мощным активатором липопротеинлипазы.
Поэтому этого взаимодействия количество триацилглицеринов в хиломикроне снижается, и он теряет апобелок \"С\", а апоЕ при этом становится хорошим лигандом для рецепторов печени. Масса хиломикрона уменьшается. Это приводит к изменению его конформации, он превращается в «остаточный хиломикрон». Остаточный хиломикрон взаимодействует с рецепторами печени и поглощается гепатоцитами путем эндоцитоза. Печень в составе остаточного хиломикрона получает пищевой (экзогенный) холестерин.
Следовательно, функциями хиломикронов являются:
Доставка пищевого (экзогенного) жира из кишечника в другие ткани (главным образом в жировую ткань).
Транспорт экзогенного холестерина из кишечника в печень.
Поэтому хиломикроны - это транспортная форма экзогенного жира и экзогенного холестерина.
В жировой ткани из продуктов гидролиза триацилглицеринов снова происходит ресинтез жира (второй), и он депонируется там, пока не будет востребован.
38. ЛИПОПРОТЕИНЫ
Липопротеины - это сферические частицы, в которых можно выделить гидрофобную сердцевину, состоящую из триглицеридов (ТРГ) и эфиров холестерина (ЭХС) и амфифильную оболочку, в составе которой – фосфолипиды, гликолипиды и белки.
Белки оболочки называются апобелками. Холестерин (ХС) обычно занимает промежуточное положение между оболочкой и сердцевиной. Компоненты частицы связаны слабыми типами связей и находятся в состоянии постоянной диффузии – способны перемещаться друг относительно друга.
Основная роль липопротеинов – транспорт липидов, поэтому обнаружить их можно в биологических жидкостях.
При изучении липидов плазмы крови оказалось, что их можно разделить на группы, так как они отличаются друг от друга по соотношению компонентов. У разных липопротеинов наблюдается различное соотношение липидов и белка в составе частицы, поэтому различна и плотность.
Липопротеины разделяют по плотности методом ультрацентрифугирования, при этом они не осаждаются, а всплывают (флотируют). Мерой всплывания является константа флотации, обозначаемая Sf (сведберг флотации).
Липопротеины можно разделить и методом электрофореза. При классическом щелочном электрофорезе разные липопротеины ведут себя по-разному. При помещении липопротеинов в электрическое поле хиломикроны остаются на старте.
Определение липопротеинового спектра плазмы крови применяется в медицине для диагностики атеросклероза.
Все эти липопротеины отличаются по своей функции.
1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень.
2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.
3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани.
4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью.
При определении содержания в крови липопротеинов различной плотности их обычно разделяют методом электрофореза. При этом ХМ остаются на старте, ЛОНП оказываются во фракции пре-глобулинов, ЛНП и ЛПП находят во фракции -глобулинов, а ЛВП - 2-глобулинов. Если в крови повышено содержание -глобулинов (ЛНП) - это означает, что холестерин откладывается в тканях (развивается атеросклероз).
РОЛЬ АПОБЕЛКОВ В СОСТАВЕ ЛИПОПРОТЕИНОВ
Белковые компоненты липопротеинов особенно важны. Они называются \"аполипопротеинами\" и обозначаются латинскими буквами (апоА, апоВ, апоС и так до апоG).
ФУНКЦИИ АПОБЕЛКОВ.
1. Апобелки выполняют функцию эмульгаторов, потому что являются амфифильными веществами.
2. Некоторые из аполипопротеинов являются регуляторами активности ферментов липидного обмена.
3. Могут обладать собственной ферментативной активностью.
Могут выступать в качестве лигандов клеточных рецепторов для липопротеинов.
Многие апобелки осуществляют транспорт липидов из одного липопротеина в другой.

39. 1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень.
2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.
3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани.
4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью.
При определении содержания в крови липопротеинов различной плотности их обычно разделяют методом электрофореза. При этом ХМ остаются на старте, ЛОНП оказываются во фракции пре-глобулинов, ЛНП и ЛПП находят во фракции -глобулинов, а ЛВП - 2-глобулинов. Если в крови повышено содержание -глобулинов (ЛНП) - это означает, что холестерин откладывается в тканях (развивается атеросклероз).

40. ЛИПОГЕНЕЗ.

АТФ необходим для синтеза активных форм субстратов, используемых в процессе синтеза жира.
Для синтеза нейтрального жира необходим глицерин в активной форме - глицерол-3-фосфат (фосфоглицерин). Глицерол-3-фосфат может быть получен двумя способами:
Путем активации глицерина с помощью глицеринкиназы.
2. Путем восстановления фосфодиоксиацетона, полученного при распаде глюкозы.
Кроме глицерина, для синтеза нейтрального жира необходимы жирные кислоты в активной форме. Активная форма любой жирной кислоты – Ацил-КоА. Образуется при участии фермента ацил-КоА-синтазы.
Здесь наблюдается глубокий распад АТФ до АМФ. АМФ не может вступить в окислительное фосфорилирование. Поэтому существует реакция: АТФ + АМФ 2АДФ. Поэтому затраты на активацию молекулы жирной кислоты эквивалентны затрате двух АТФ. Следующим этапом на пути синтеза жира является реакция образования фосфатидной кислоты.
Реакция катализируется ключевым ферментом липогенеза – глицерол-3-фосфатацилтрансферазой. Для этого фермента нет аллостерических эффекторов, но обнаружен адипсин (ацилстимулирующий белок), который облегчает взаимодействие Ацил-КоА с ферментом. Адипсин является продуктом протеолиза одного из компонентов системы комплемента. Относится к гормонам местного действия, так как вырабатывается в жировой ткани и действует там же.
Две последующие реакции являются завершающими в синтезе триацилглицерина.
Реакции синтеза не зависят от того, каково происхождение веществ – участников реакций.
Жир может синтезироваться как из продуктов распада жира, так и из углеводов. Синтез эндогенного жира из углеводов протекает в печени и в жировой ткани. Ацил-КоА синтезируется из Ацетил-КоА. ГБФ-путь распада углеводов обеспечивает синтез энергией. Образование Ацетил-КоА происходит в матриксе митохондрий. Синтез жирных кислот идет в цитоплазме на мембранах эндоплазматического ретикулума путем постепенного удлинения ацетил-КоА на 2 углеродных атома за каждый цикл. Удлинение высших жирных кислот, содержащих более 16 углеродных атомов, идёт путём реакций, обратных -окислению (О -окислении смотрите ниже, раздел «Катаболизм жирных кислот»). Однако реакции синтеза жирных кислот до 16 углеродных атомов принципиально отличаются от реакций, обратных -окислению. Они протекают обходным обратным путём.
Отличия реакций синтеза высших жирных кислот от обратных бета-окислению:
1. -окисление протекает в митохондриях, а синтез жирных кислот протекает в цитоплазме на мембранах эндоплазматического ретикулума. Но образуется Ацетил-КоА в митохондриях, а через мембраны сам проходить не может. Поэтому существуют механизмы транспорта Ацетил-КоА из митохондрий в цитоплазму.

42. Нарушение соотношения между количеством ЛНП - липопротеины низкой плотности, ЛОНП (липопротеины очень низкой плотности, состоят на 75% из холестерина), и ЛВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозу. Поэтому ЛНП называют атерогенными липопротеинами, а ЛВП - антиатерогенными липопротеинами. При наследственном дефиците ЛВП наблюдаются ранние формы атеросклероза.
Хиломикроны не способны проникать внутрь сосудистой стенки из-за своих больших размеров, а ЛНП, ЛВП, и частично ЛОНП могут проникать внутрь сосудистой стенки. Однако ЛВП имеют самый малый размер и могу легче удалятся из сосудистой стенки ч-з его лимфасистему. ЛВП имеют в своем составе имеют наибольший процент белка и фосфолипидов, способны метаболизировать в сосудистой стенке быстрее чем богатые холестерином и триглицеридами ЛНП и ЛОНП. Экспериментальные и клинические наблюдения свидетельствуют о том, что из всех липопротеидов атерогенностью обладают только ЛНПи ЛОНП. Именно они способны проникнуть в сосудистую стенку из плазмы и служить в дальнейшем первичным субстратом, вызывающим атеросклеротическое поражение артерий.
Все гормоны, влияющие на мобилизацию жира, можно разделить на 2 группы
Гормоны прямого действия (адреналин, соматотропный гормон гипофиза, инсулин).
Гормоны косвенного действия (глюкокортикостероиды, половые гормоны, лептин).

43.АДРЕНАЛИН
Мембраны адипоцитов содержат адренорецепторы двух типов ( и ). Взаимодействие адреналина с рецепторами обоих типов вызывает изменение концентрации цАМФ. Однако, это влияние разнонаправленное.
-адренорецептор связан с ингибирующим G-белком (Gi), свызывающим понижение активности аденилатциклазы. Это приводит к уменьшению концентрации цАМФ, и, в конечном счете, торможению липолиза.
-адренорецептор связан со стимулирующим G-белком (Gs) – эффектом будет стимуляция липолиза.
Соотношение - и -адренорецепторов зависит от индивидуальных особенностей организма. Это касается как организма в целом, так и распределения этих рецепторов в разных частях тела – поэтому в процессе липолиза разные части тела у разных людей «худеют» неодинаково. Однако в целом у человека преобладают -адренорецепторы, поэтому суммарное действие адреналина приводит к активации липолиза.
СОМАТОТРОПНЫЙ ГОРМОН – стимулирует липолиз, воздействуя через аденилатциклазную систему.
Действие ИНСУЛИНА связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации.
ГЛЮКОКОРТИКОСТЕРОИДЫ: рецепторы к этим гормонам присутствуют в адипоцитах и содержат в своем составе белки теплового шока. После взаимодействия гормона с рецептором белки теплового шока отделяются, а сам комплекс транспортируется в ядро клетки, где влияет на синтез белков адипоцита. Конкретные механизмы влияния не до конца выяснены и находятся в стадии изучения. В итоге глюкокортикостероиды оказывают двоякое действие: на фоне мышечной работы они стимулируют липолиз, а в состоянии покоя – ингибируют его. Установлено, что при развитии опухоли коры надпочечников или при введении высоких доз препаратов глюкокортикостероидов, наблюдается рост жировых запасов на лице и в верхней части туловища (синдром Иценко-Кушинга).
ПОЛОВЫЕ ГОРМОНЫ: точный механизм их воздействия на жировой обмен пока не выяснен, но известно, что действуют эти гормонов связано со стимуляцией синтеза определенных белков. Действие половых гормонов однонаправленное: стимуляция распада жира. Ярким примером является действие тестостерона. Кастрация приводит к увеличению запасов жира.
ЛЕПТИН (от лат. Leptos – тонкий, худой). По химической природе – полипептид, синтезируется в адипоцитах. Лептин – гормон жировой ткани (поэтому жировую ткань можно отнести к эндокринным). Рецепторы к лептину расположены в гипоталамусе и в тканях репродуктивной системы. Лептин снижает выработку нейропептида Y, который вызывает повышение аппетита и усиливает синтез жира (точные механизмы воздействия пока неясны).Лептин также стимулирует выработку разобщающих белков бурого жира. Суммарный эффект лептина: снижение аппетита и усиление липолиза. Концентрация лептина в крови пропорциональна количеству жировых клеток. Поэтому, можно считать, что лептин передает в головной мозг информацию о количестве жира в организме. Лептин также усиливает репродуктивную функцию человека. В настоящее время ведутся работы над созданием рекомбинантного лептина для лечения ожирения.
Продукты липолиза - глицерин и жирные кислоты выходят из жировой клетки, попадают в кровь и поступают в клетки других тканей. Глицерин как вещество гидрофильное растворяется в плазме крови. Жирные кислоты - гидрофобные вещества. Поэтому для транспорта в кровяном русле для них необходимы переносчики. Транспорт жирных кислот обеспечивают белки плазмы крови альбумины, образующие с ними комплексы. Такие комплексы образуются путем формирования слабых типов связей: гидрофобного взаимодействия радикалов жирных кислот и ионных связей СООН-групп жирных кислот с радикалами лизина молекулы альбумина. Следовательно, жирные кислоты в составе комплекса являются химически свободными. Жирные кислоты, находящиеся в комплексе с альбуминами, обозначаются термином НЕЭСТЕРИФИЦИРОВАННЫЕ ЖИРНЫЕ КИСЛОТЫ (НЭЖК). Уровень НЭЖК в крови – показатель степени мобилизации жира: чем больше в плазме крови НЭЖК, тем интенсивнее идет липолиз.
Липолиз происходит в ходе мышечной работы и при голодании, что сопоровождается повышением концентрации НЭЖК в крови. Глицерин и жирные кислоты в этой ситуации выступают как источники энергии.

44. Белки являются незаменимым компонентом пищи. В отличие от белков - углеводы и жиры не являются незаменимыми компонентами пищи. Ежесуточно потребляется около 100 граммов белков взрослым здоровым человеком. Пищевые белки – это главный источник азота для организма. В смысле экономическом белки являются самым дорогим пищевым компонентом. Поэтому очень важным в истории биохимии и медицины было установление норм белка в питании.
В растущем организме при образовании новых органов и тканей скорость синтезов многих его компонентов больше чем скорость их распада. Почти все белки тела, включая структурные, гемоглобин, белки плазмы и многих других биологических жидкостей, также подвергаются постоянному синтезу и распаду.
В опытах Карла Фойта впервые были установлены нормы потребления пищевого белка - 118г/сутки, углеводов - 500г/сутки, жиров 56г/сутки. М.Рубнер первым определил, что 75% азота в организме находится в составе белков. Он составил азотистый баланс (определил, сколько азота человек теряет за сутки и сколько азота прибавляется).
У взрослого здорового человека наблюдается азотистое равновесие – «нулевой азотистый баланс» (суточное количество выведенного из организма азота соответствует количеству усвоенного).
Положительный азотистый баланс (суточное количество выведенного из организма азота меньше, чем количество усвоенного). Наблюдается только в растущем организме или при восстановлении белковых структур (например, в периоде выздоровления при тяжелых заболеваниях или при наращивании мышечной массы).
Отрицательный азотистый баланс (суточное количество выведенного из организма азота выше, чем количество усвоенного). Наблюдается при белковой недостаточности в организме. Причины: недостаточное количество белков в пище; заболевания, сопровождающиеся повышенным разрушением белков.

45 ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ БЕЛКОВ В ЖЕЛУДОЧНО-KИШЕЧНОМ ТРАКТЕ
Переваривание не относится к процессам метаболизма, поскольку происходит вне организма (по отношению к тканям просвет желудочно-кишечного тракта является внешней средой). Задача переваривания - раздробить (расщепить) крупные молекулы пищевых веществ до маленьких стандартных мономеров, которые всасываются в кровь. Эти вещества, которые получаются в результате переваривания, уже лишены видовой специфичности. Но энергетические запасы, имеющиеся в пищевых веществах, сохраняются, и в дальнейшем используются организмом.
Все пищеварительные процессы являются гидролитическими, то есть не приводят к большой потери энергии - они не окислительные. Каждые сутки в организм человека всасывается примерно 100 граммов аминокислот, которые поступают в кровь. Еще 400 граммов аминокислот поступает ежесуточно в кровь в результате распада собственных белков тела. Все эти 500 г аминокислот представляют собой метаболический пул аминокислот. Из этого количества 400 граммов используется для синтеза белков тела человека, а оставшиеся 100 г ежедневно распадаются до конечных продуктов: мочевина, CO2 . В процессе распада образуются также необходимые организму метаболиты, способные выполнять функции гормонов, медиаторов различных процессов и другие вещества (например: меланины, гормоны адреналин и тироксин).
Для белков печени период полураспада составляет 10 дней. Для белков мышц этот период составляет 80 дней. Для белков плазмы крови - 14 дней, печени - 10 дней. Но есть белки, которые распадаются быстро (для a2-макроглобулина и инсулина период полураспада - 5 мин).
Ежедневно ресинтезируется около 400 г белков.
Распад белков до аминокислот происходит путем гидролиза - присоединяется H2O по месту расщепления пептидных связей под действием протеолитических ферментов. Протеолитические ферменты называются ПРОТЕИНАЗАМИ или ПРОТЕАЗАМИ..
Пепсин – Это фермент желудочного сока. Синтезируется в клетках слизистой оболочки желудка в форме неактивного предшественника - пепсиногена. Превращение неактивного пепсиногена в активный пепсин происходит в полости желудка. При активации отщепляется пептид, закрывающий активный центр фермента. Активация пепсина происходит под действием двух факторов:
а) соляной кислоты (HCl)
б) уже образовавшегося активного пепсина - это называется аутокатализом.
Пепсин является карбоксильной протеиназой и катализирует гидролиз связей, образованных аминокислотами фенилаланином (Фен) или тирозином (Тир) в R2-положении (смотрите предыдущий рисунок), а также связь Лей-Глу. pH-оптимум пепсина равен 1.0-2.0 рН, что соответствует рН желудочного сока.
У детей ренин.

46. Переваривание не относится к процессам метаболизма, поскольку происходит вне организма (по отношению к тканям просвет желудочно-кишечного тракта является внешней средой). Задача переваривания - раздробить (расщепить) крупные молекулы пищевых веществ до маленьких стандартных мономеров, которые всасываются в кровь. Эти вещества, которые получаются в результате переваривания, уже лишены видовой специфичности. Но энергетические запасы, имеющиеся в пищевых веществах, сохраняются, и в дальнейшем используются организмом.
Все пищеварительные процессы являются гидролитическими, то есть не приводят к большой потери энергии - они не окислительные. Каждые сутки в организм человека всасывается примерно 100 граммов аминокислот, которые поступают в кровь. Еще 400 граммов аминокислот поступает ежесуточно в кровь в результате распада собственных белков тела. Все эти 500 г аминокислот представляют собой метаболический пул аминокислот. Из этого количества 400 граммов используется для синтеза белков тела человека, а оставшиеся 100 г ежедневно распадаются до конечных продуктов: мочевина, CO2 . В процессе распада образуются также необходимые организму метаболиты, способные выполнять функции гормонов, медиаторов различных процессов и другие вещества (например: меланины, гормоны адреналин и тироксин).
Для белков печени период полураспада составляет 10 дней. Для белков мышц этот период составляет 80 дней. Для белков плазмы крови - 14 дней, печени - 10 дней. Но есть белки, которые распадаются быстро (для a2-макроглобулина и инсулина период полураспада - 5 мин).
Ежедневно ресинтезируется около 400 г белков.
Распад белков до аминокислот происходит путем гидролиза - присоединяется H2O по месту расщепления пептидных связей под действием протеолитических ферментов.Протеолитические ферменты называются ПРОТЕИНАЗАМИ или ПРОТЕАЗАМИ..
Трипсин - Синтезируется в поджелудочной железе в форме неактивного предшественника - трипсиногена. Активируется в полости кишечника ферментом энтеропептидазой при участии ионов кальция, а также способен к аутокатализу. Гидролизует связи, образованные положительно заряженными аминокислотами аргинином (Арг) и лизином (Лиз) в R1-положении. Его адсорбционный центр похож на адсорбционный центр химотрипсина, но в глубине гидрофобного кармана есть отрицательно заряженная карбоксильная группа.
Эластаза - Синтезируется в поджелудочной железе в виде неактивного предшественника - проэластазы. Активируется в полости кишечника трипсином. Гидролизует пептидные связи в R1-положении, образованные глицином, аланином и серином.
Все перечисленные малоспецифичные протеиназы относятся к ЭНДОПЕПТИДАЗАМ, потому что гидролизуют связь внутри молекулы белка, а не на концах полипептидной цепи. Под действием этих протеиназ полипептидная цепь белка расщепляется на крупные фрагменты. Затем на эти крупные фрагменты действуют ЭКЗОПЕПТИДАЗЫ, каждая из которых отщепляет одну аминокислоту от концов полипептидной цепи.
Аминокислоты подобно глюкозе всасываются свободно с ионами натрия.

47. Гниение. Превращение свободных аминокислот под действием микрофлоры нижнего отдела киш-ка. Микрофлора киш-ка располагает набором ферментных систем, отличных от соответствующих ф-ов тканей и катализирующих различные разнообразные превращения пищевых а.к. (окисление, восстановление, дезаминирование, декарбоксилирование, распад). Благодаря этому в кишечнике создаются оптимальные условия для образования ядовитых продуктов распада а.к., в частности фенола, индола, крезола, скатола, а т.ж. нетоксичных для организма ряда других соединений – спиртов, аминов, ж.к..
Все эти превращения а.к., вызванные деятельностью микроорганизмов, получили общее название гниения белков в киш-ке. После всасывания эти продукты попадают в воротную вену за тем в печень, где они подвергаются обезвреживанию путем хим-ого связывания с серной или глюкуроновой к-той с образованием нетоксичных к-т. Последние выделяются с мочой. В печени содержаться специфические ф-ты – арилсульфотрансфераза, УДФ-глюкоронилтрансфераза катализирующие перенос остатка серной к-ты из ее связанной ф-ы - ФАФС.

48. КАТАБОЛИЗМ АМИНОКИСЛОТ.
80% аминокислот, которые поступают в организм из желудочно-кишечного тракта, используются для синтеза белков. Остальные 20% вступают в метаболические процессы. Все эти процессы можно разделить на 2 группы:
1. Общие пути катаболизма аминокислот (для всех аминокислот они одинаковы). В них принимает участие общая часть молекулы аминокислоты.
2. Специфические пути метаболизма для каждой отдельной аминокислоты (разные для разных аминокислот) - участвуют радикалы аминокислот. Это - особенности обмена отдельных аминокислот.
ОБЩИЕ ПУТИ КАТАБОЛИЗМА АМИНОКИСЛОТ
1. Декарбоксилирование
2. Дезаминирование
3. Трансаминирование (переаминирование)
ДЕЗАМИНИРОВАНИЕ АМИНОКИСЛОТ
У человека происходит в основном путем окислительного дезаминирования. Эти реакции протекают с помощью двух ферментов:
- оксидаза Д-аминокислот
- оксидаза L-аминокислот
Эти ферменты обладают групповой стереоспецифичностью. Оксидазы отнимают протоны и электроны от аминокислот с помощью такого же механизма, как и оксидазы, обеспечивающие дезаминирование биогенных аминов. Эти ферменты являются флавопротеинами и содержат в качестве простетической группы ФАД или ФМН:
На первой стадии образуется иминокислота, а затем, после спонтанного гидролиза образуется альфа-кетокислота.
Кроме оксидаз имеется еще один фермент, катализирующий окислительное дезаминирование глутаминовой кислоты - глутамат-дегидрогеназа (глутаматДГ).
Этот фермент является НАД-зависимым и обладает высокой активностью (как и другие НАД-зависимые дегидрогеназы). В этом его отличие от оксидаз аминокислот, которые медленно превращают аминокислоты в физиологических условиях (поэтому в клетке сохраняется большинство аминокислот). Так как глутамат-ДГ является никотинамидной, то отнимаемые протоны и электроны не передаются сразу на кислород, а транспортируются по полной цепи МтО с образованием воды и параллельным образованием трех молекул АТФ.
Глутамат-ДГ обладает высокой активностью и этим отличается от МАО и ДАО. Глутамат-ДГ является регуляторным ферментом - он ингибируется избытком АТФ, и активируется избытком АДФ.
БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ РЕАКЦИЙ ДЕЗАМИНИРОВАНИЯ
1. Реакции дезаминирования необратимы, как и реакции декарбоксилирования - дезаминирование тоже может играть роль первого этапа на путях распада аминокислот.
2. Один из непосредственных продуктов дезаминирования -конечный продукт метаболизма аммиак. Это токсическое вещество. Поэтому клетки должны затрачивать энергию, чтобы обезвредить аммиак до безвредных продуктов, которые выводятся из организма.
3. Другой продукт реакции дезаминирования - альфа-кетокислота.Все образующиеся альфа-кетокислоты легко расщепляются дальше до СО2 и Н2О (например, аланин превращается в ПВК (путем дезаминирования; аспартат - в ЩУК; глутаминовая кислота - в альфа-кетоглутаровую). Большинство альфа-кетокислот тем или иным путем превращаются в кислоты, которые являются промежуточными метаболитами ЦТК:
- в альфа-кетоглутаровую; - в янтарную;- фумаровую; - щавелево-уксусную. Все эти метаболиты могут в организме трансформироваться в углеводы, перед этим превращаясь в ПВК. Поэтому большинство аминокислот относится к группе, которая называется ГЛЮКОГЕННЫМИ АМИНОКИСЛОТАМИ (их 17). Только 3 аминокислоты не могут превращаться в ПВК, но превращаются в Ац-КоА - КЕТОГЕННЫЕ АМИНОКИСЛОТЫ: лейцин, лизин, триптофан). Они могут прямо трансформироваться в жирные кислоты или в кетоновые тела.
Метаболические пути, в которые вступают аминокслоты после дезаминирования, уже не являются собственно путями метаболизма аминокислот, а являются универсальными и для аминокислот, и для углеводов, и для жиров.

49. ТРАНСАМИНИРОВАНИЕ
Эта реакция заключается в том, что аминокислота и кетокислота обмениваются друг с другом своими функциональными группами при альфа-углеродном атоме. В результате вступившая в реакцию аминокислота превращается в соответствующую альфа-кетокислоту, а кетокислота становится аминокислотой.
Эту реакцию катализируют ферменты под названием ТРАНСАМИНАЗЫ (АМИНОТРАНСФЕРАЗЫ). Коферментом всех трансаминаз является активная форма витамина В6 - пиридоксальфосфат (фосфопиридоксаль).
ГЛАВНЫЕ ОСОБЕННОСТИ РЕАКЦИИ ТРАНСАМИНИРОВАНИЯ:
1. Это циклический процесс, все стадии которого катализируются одним и тем же ферментом - трансаминазой данной пары кислот. В этот цикл вступает одна аминокислота и кетокислота (в приведенном примере - это глутамат и ПВК). Образуются другая альфа-кетокислота и аминокислота (в приведенном примере - альфа-кетоглутарат и аланин).
2. Все стадии этого процесса обратимы. Поэтому весь цикл в целом может протекать как в прямом, так и в обратном направлении. Направление этого цикла зависит от соотношения концентраций участников реакции - всех четырех кислот. Резко повысив концентрацию какой-либо одной из кислот, можно направить реакцию по определенному направлению.
3. Каждая трансаминаза обычно специфична для одной пары субстратов и соответствующей ей пары продуктов и все стадии реакции катализируются только одним ферментом. По участникам процесса для данного фермента дают ему название:Фермент, который катализирует приведенную реакцию, можно назвать: Аланинаминотрансфераза (АлТ) (глутаминово-пировиноградная трансаминаза (ГПТ)).
4. Трансаминазы обычно обладают высокой субстратной специфичностью и высокой активностью. Наиболее активными в клетках являются те трансаминазы, для которых хотя бы один из субстратов является дикарбоновой альфа-кетокислотой - это АлТ - аланинаминотрансфераза (ГПТ) и АсТ - аспартатаминотрансфераза (ГЩТ).
Определение активности этих ферментов в сыворотке крови имеет важное значение в ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКЕ таких заболеваний, как ВИРУСНЫЙ ГЕПАТИТ и ИНФАРКТ МИОКАРДА.
АсТ и АлТ являются внутриклеточными ферментами. Поэтому в норме их активность в крови очень мала. При вирусном гепатите или при инфаркте миокарда наблюдается разрушение клеток печени или миокарда соответственно. Поэтому в крови будет наблюдаться повышение активности и АлТ, и АсТ, но неодинаковое для каждого из ферментов.
В клетках сердечной мышцы (миокарда) содержится гораздо больше АсТ, чем АлТ, а в клетках печени - наоборот: АлТ намного больше, чем АсТ. Поэтому ПРИ ИНФАРКТЕ МИОКАРДА АКТИВНОСТЬ АСТ в крови БУДЕТ ЗНАЧИТЕЛЬНО ВЫШЕ, ЧЕМ АЛТ, А ПРИ ВИРУСНОМ ГЕПАТИТЕ АКТИВНОСТЬ АЛТ БУДЕТ ВЫШЕ, ЧЕМ АСТ.
Поэтому определение активности этих ферментов в крови помогает врачам в постановке правильного диагноза.
БИОЛОГИЧЕСКАЯ РОЛЬ РЕАКЦИЙ ТРАНСАМИНИРОВАНИЯ.
1. ОБЕСПЕЧИВАЮТ СИНТЕЗ НОВЫХ АМИНОКИСЛОТ ИЗ ЧИСЛА ЗАМЕНИМЫХ. Из заменимых аминокислот также могут образоваться необходимые клетке кетокислоты.
Эта функция позволяет ругулировать содержание различных аминокислот в клетках организма (корректировка аминокислотного состава клеток). В основе этой роли - полная обратимость реакции трансаминирования.
При избытке какой-либо из кислот соотношение быстро восстанавливается трансаминазой за счет другой пары. Недостающее количество какой-либо из кислот может быть взято клеткой из других метаболических путей (например, альфа-кетоглутарат может быть взят из ЦТК). Избыток какой-либо из кислот может быть ликвидирован другими ферментами (например, избыточное количество глутамата окисляется глутаматдегидрогеназой).
2. ОБЕСПЕЧИВАЮТ ПРОТЕКАНИЕ РЕАКЦИЙ КОСВЕННОГО ДЕЗАМИНИРОВАНИЯ.
3. ОБЕСПЕЧИВАЮТ СИНТЕЗ МОЧЕВИНЫ

50.ОБЕЗВРЕЖИВАНИЕ АММИАКА. СИНТЕЗ МОЧЕВИНЫ (ОРНИТИНОВЫЙ ЦИКЛ).
Только у рыб аммиак является конечным продуктом распада и выводится из организма. У птиц и рептилий, конечный продукт катаболизма азотсодержащих соединений - мочевая кислота, а не аммиак. У млекопитающих образующийся аммиак превращается в мочевину - это полный амид угольной кислоты:
Образование мочевины происходит в печени в результате орнитинового цикла (открыт Г.Кребсом).
1. В матриксе митохондрий соединяются СО2 и NH3 (при этом расходуются две молекулы АТФ).
Синтез мочевины представляет собой циклический процесс, в который вступают предварительно синтезированный карбамоил-фосфат и аспартат, а образуются фумарат и мочевина.
Мочевина синтезируется из одной молекулы СО2, одной молекулы NH3 и аминогруппы аспартата. Из фумарата в реакциях ЦТК вновь образуется щавелевоуксусная кислота, которая может вступать в трансаминирование с другими аминокислотами и превращаться в аспартат.
Таким образом, в орнитиновом цикле существуют два сопряженных цикла:а) образование мочевины; б) регенерация аспартата.
В добавление к лекции по общим путям обмена аминокислот можно сказать, что еще одна, третья по счету функция трансамини рования - это перенос аминогруппы с аминокислот для синтеза мочевины без промежуточного выделения аммиака.
При синтезе мочевины расходуется в сумме 4 молекулы АТФ. Мочевина - это нетоксичное вещество, которое легко выводится из организма с мочой. Накопление мочевины в крови выше нормы происходит только при нарушениях функции почек.
Синтез мочевины происходит только в печени, а аммиак образуется в разных тканях. Значит, должен быть специальный механизм транспорта аммиака в безвредной для организма форме: это МЕХАНИЗМ ВРЕМЕННОГО ОБЕЗВРЕЖИВАНИЯ АММИАКА.
Обеспечивается ферментом глутамин-синтетазой, которая присоединяет с затратой АТФ дополнительную аминогруппу к гамма-карбоксигруппе:
Аминогруппа может также присоединяться и к аспартату - к бета-карбоксигруппе.
Особенно важны реакции временного обезвреживания аммиака в нервной ткани (очень чувствительной к токсическому влиянию аммиака). Со значительной скоростью протекают они и в мышечной ткани.
Образующиеся амиды переносятся в печень, где отдают амидный азот на синтез мочевины. В почках некоторое количество аммиака из амидов может выделяться в свободном виде. Обычно такого аммиака образуется немного, но если в организме - ацидоз - сдвиг рН в кислую сторону, то этот аммиак начинает выделяться с мочой в больших количествах. Аммиак позволяет частично нейтрализовать кислоты, которые из крови при ацидозе попадают в мочу. Таким образом, глутамин и аспарагин являются транспортными формами аммиака и в составе своей молекулы переносят его из разных тканей к печени и к почкам.

51. ДЕКАРБОКСИЛИРОВАНИЕ
В природе встречаются разные типы декарбоксилирования аминокислот. В организме человека происходит только окислительное декарбоксилирование. Ферменты - декарбоксилазы. Их простетическая группа представлена пиридоксальфосфатом - это активная форма витамина В6:
В реакциях декарбоксилирования участвует альдегидная группа пиридоксальфосфата:
Аминокислота соединяется с активным центром фермента, в состав которого входит альдегидная группа ПФ. Образуются Шиффовы основания (альдимины и кетимины). В результате СООН-группа становится лабильной и отщепляется в виде СО2. Далее происходит гидролиз до соответствующего амина. Эта реакция необратима. Отнятие СО2 происходит без окисления.
Субстратная специфичность декарбоксилаз очень разная.
1. ГЛУТАМАТДЕКАРБОКСИЛАЗА - высокоспецифичный фермент. Работает в клетках серого вещества головного мозга. Катализирует реакцию превращения глутаминовой кислоты в гамма-аминомасляную кислоту (ГАМК).
ГАМК является медиатором тормозных импульсов в нервной системе. ГАМК и ее аналоги применяются в медицине как нейротропные средства для лечения эпилепсии и других заболеваний.
2. ОРНИТИН-ДЕКАРБОКСИЛАЗА - высокоспецифичный фермент. Катализирует превращение орнитина в путресцин:Образующийся ПУТРЕСЦИН (диаминобутан) является трупным ядом. В результате присоединения остатков пропиламина из путресцина могут образоваться СПЕРМИН и СПЕРМИДИН, содержащие 3 (у спермина) или 4 (у спермидина) имино- или аминогруппы.
Спермин и спермидин относятся к группе биогенных полиаминов. Введение полиаминов в организм снижает температуру тела и кровяное давление. Полиамины принимают участие в процессах пролиферации клеток и роста тканей, а также в регуляции биосинтеза белка. Они являются ингибиторами некоторых ферментов, в том числе протеинкиназ.
Орнитиндекарбоксилаза - это первый фермент на пути образования путресцина и остальных полиаминов, это регуляторный фермент процесса.
В культуре клеток добавление некоторых гормонов ускоряет биосинтез орнитиндекарбоксилазы в 10-200 раз.
Период полужизни орнитиндекарбоксилазы - 10 минут.
Добавление в культуру клеток самих полиаминов приводит к индукции биосинтеза другого белка - ингибитора орнитиндекарбоксилазы. При раковых заболеваниях обнаружено резкое увеличение секреции полиаминов и повышение их экскреции с мочой.
3. ГИСТИДИНДЕКАРБОКСИЛАЗА
Этот фермент имеет абсолютную субстратную специфичность - превращает гистидин в гистамин:Гистамин является медиатором и содержится в нервных клетках и в тучных клетках. Обладают сильным сосудорасширяющим действием. Особенно много его выделяется в очаге воспаления. Гистамин играет важную роль в проявлении аллергических реакций.
Известно 2 типа рецепторов к гистамину:H1 и H2.
Эффекты гистамина:
- расширение капилляров и повышение сосудистой проницаемости;
- понижение артериального давления;
- повышение тонуса (спазм) гладких мышц - в том числе гладкой мускулатуры бронхов;
- усиление секреции желудочного сока;
Некоторые из этих эффектов позволяют гистамину принимать участие в формировании аллергических проявлений.
Антигистаминные препараты применяются с целью предотвратить образование гистамина и обладают противовоспалительным и антиаллергическим действием. По механизму действия некоторые из них являются ингибиторами гистидин-декарбоксилазы, а другие конкурируют с гистамином за взаимодействие с рецепторами клеток.
Например, лекарственный препарат циметидин и его аналоги блокируют Н2-рецепторы и таким образом понижают секрецию желудочного сока. Применяются при лечении язвенной болезни желудка.
Блокаторы Н1-рецепторов используются в основном как противоаллергические средства - димедрол, тавегил, супрастин, пипольфен, грандаксин. Некоторые из этих препаратов вызывают сонливость.
4. ДЕКАРБОКСИЛАЗА АРОМАТИЧЕСКИХ АМИНОКИСЛОТ
Имеет широкую субстратную специфичность. Превращает несколько разных аминокислот:
а) триптофан - в триптамин
б) 5-окситриптофан - в триптамин (серотонин)
в) 3,4-диоксифенилаланин - в дофамин
г) гистидин - в гистамин
Серотонин вырабатывается в нервной ткани. Некоторые виды головных болей (мигрени) связаны с избыточной выработкой серотонина. Серотонин сужает сосуды, регулирует свертывание крови. Обладает антиаллергическим действием. Триптамин обладает сходным эффектом.
Аминокислота фенилаланин может в результате окисления присоединять две ОН-группы в кольце и превращаться в диоксифенилаланин (ДОФА). Из него под действием ДЕКАРБОКСИЛАЗЫ АРОМАТИЧЕСКИХ АМИНОКИСЛОТ образуется дофамин. Дофамин является предшественником катехоламинов - норадреналина и адреналина.
Кроме функции предшественника, ДОФАмин имеет свои специфические функции. Если ДОФА метилируется, то образуется a-метил-ДОФА. Это соединение является сильным ингибитором декарбоксилазы ароматических аминокислот. Применяется как лекарственный препарат для понижения артериального давления (называется - альдомет).
БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ РЕАКЦИЙ ДЕКАРБОКСИЛИРОВАНИЯ АМИНОКИСЛОТ
1. Реакции необратимы - приводят к необратимому распаду аминокислот.
2. Образуется значительное количество СО2 - конечного продукта метаболизма, который выводится из организма.
3. Образуются амины, которые обладают высокой биологической активностью. Поэтому такие амины называют биологически активными или биогенными аминами. Они являются медиаторами, с помощью которых сигнал передается от одной клетки к другой и от одной молекулы к другой.

52. ОБМЕН ЦИКЛИЧЕСКИХ АМИНОКИСЛОТ ФЕНИЛАЛАНИНА И ТИРОЗИНА
Фенилаланин является незаменимой аминокислотой, а тирозин - заменимая аминокислота.
Фенилаланин вступает в незначительное количество превращений в тканях. Кроме включения этой аминокислоты в структуру молекул белка, единственным путем метаболизма фенилаланина у здорового человека является его окисление в тирозин с участием фермента микросомального окисления, специфической монооксигеназой - фенилаланингидроксилазой:
Тирозин вступает в многочисленные реакции в различных тканях. В результате этих превращений тирозин не только распадается до конечных продуктов, но и дает промежуточные метаболиты, из которых образуются ряд важных соединений, некоторые из которых являются биологически активными веществами.
Из тирозина образуются:
а) гормоны мозгового слоя надпочечников адреналин и норадреналин,
б) меланины - пигменты кожи, волос, радужной оболочки глаза,
в) йодсодержащие гормоны щитовидной железы - тироксин и трийодтиронин.
НАРУШЕНИЯ ОБМЕНА ФЕНИЛАЛАНИНА И ТИРОЗИНА
Нарушения обмена этих АК связано с нарушением биосинтеза некоторых ферментов, которые катализируют метаболические превращения этих АК. Результатом нарушения синтеза ферментов является возникновение наследственных генетических заболеваний:
1) фенилкетонурия - нарушен синтез фенилаланин-гидроксилазы, поэтому фенилаланин превращается в фенилпируват, который оказывает токсическое воздействие на развитие некоторых отделов головного мозга.
2) альбинизм - нарушен синтез ферментов, превращающих ДОФА в ДОФА-хром, поэтому нарушается синтез меланинов.
3) алкаптонурия - нарушен синтез диоксигеназы гомогентизиновой кислоты, она выделяется с мочой, моча приобретает черный цвет.
4) кретинизм - нарушен синтез йодиназы, что приводит к нарушению синтеза йодсодержащих гормонов щитовидной железы.
5) может быть нарушен синтез фермента тирозиназы, который катализирует превращение тирозина в ДОФА, следовательно будет нарушаться синтез гормонов мозгового слоя надпочечников и меланина.
Из всех этих заболеваний в настоящее время удается лечить фенилкетонурию, для этого из рациона ребенка исключают фенилаланин и увеличивают в пище количество тирозина. Если ребенка держать на этой диете до 6-7 лет, тогда не возникает умственная отсталость, т.к. к 6-7 годам успевают развиться отделы головного мозга, развитие которых задерживается при избытке в ткани мозга фенилпирувата.

53. Нуклеопротеины – это сложные белки, небелковым компонентом которых являются нуклеиновые кислоты – ДНК (дезоксирибонуклеиновая кислота) или РНК (рибонуклеиновая кислота). В живом организме нуклеиновые кислоты находятся в диссоциированном состоянии. В составе белковых компонентов очень много положительно заряженных аминокислот – аргинина и лизина, поэтому их можно отнести к поликатионам (гистоны). Белковые компоненты подвергаются обмену, как простые белки.
Переваривание нуклеотидов и всасывание продуктов их распада происходит в ЖКТ. Под влиянием белковых ф-ов и соляной к-ты нуклеопротеиды расподаются на белок и н.к.. За тем белки расподаются до а.к.. Распад н.к. осущ. В основном гидролитическим путем в тонком кишечнике под действием ДНК-азы и РНК-азы поджелудочного сока. Продуктами р-и под действием РНК-азы явл-ся пиримидиновые мононуклеотиды, ди- и тринуклеотиды и РНК-аза – резистентные олигонуклеотиды. Под действием ДНК-азы образуются в основном динуклкотиды, олигонуклеотиды и немного мононуклеотидов.Полный гидролиз осуществляется ф-ми слизистой кишечника.

54. Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый СИНТЕ
синтез ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)
Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантинмононуклеотид.
Пуриновое кольцо строится из СО2, аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.
Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.
Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.
Серин: тоже является донором одноуглеродного радикала.
ФРПФ + глутамин -------> глутамат + ФФ + фосфорибозиламин
Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.
На второй стадии фосфорибозиламин взаимодействует с глицином.
Третья стадия - включение углеродного атома, донором которого является глицин или серин.
Затем достраивается шестичленный фрагмент пуринового кольца:
4-ая стадия - карбоксилирование с помощью активной формы СО2 при участии витамина Н - биотина.
5-ая стадия - аминирование с участием аминогруппы из аспартата.
6-ая стадия - аминирование за счет аминогруппы глутамина.
7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ. Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.Далее из НМФ образуются НДФ и НТФ с помощью АТФ. Затраты АТФ на синтез нуклеотидов de novo очень велики. Этот способ синтеза является энергетически невыгодным.В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов. Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.

55. СИНТЕЗ ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ.
Сначала образуется сначала циклическая структура пиримидинового азотистого основания, и только затем присоединяется рибозо-фосфат.
Первая реакция синтеза пиримидиновых монуклеотидов приводит к образованию карбамоилфосфата. Одна из молекул АТФ является донором фосфата.
Оротовая кислота – первое азотистое основание на пути синтеза пиримидинов – общий предшественник остальных пиримидинов. У многих живых организмов для синтеза оротовой кислоты требуется три фермента. У человека же все реакции образования оротата катализирует один-единственный фермент, в составе которого находятся три активных центра. Оротовая кислота затем превращается в оротидинмонофосфат (ОМФ). Далее ОМФ декарбоксилируется, и образуется УМФ. Обе эти реакции катализирует один фермент с двумя активными центрами.
Другие пиримидиновые нуклеотиды можно рассматривать как производные УМФ. Для ЦМФ источником NH2-группы является амидная группировка глутамина.
Ферменты обмена пиримидиновых нуклеотидов способны распознавать в субстрате не только азотистое основание, но и количество остатков фосфорной кислоты. Как показано на схеме, цитидиновые нуклеотиды образуются только на основе трифосфатной формы.
Субстратами для синтеза РНК являются АТФ, ГТФ, ЦТФ, УТФ - рибонуклеотиды, а для синтеза ДНК – нуклеотиды, содержащие дезоксирибозу - dНТФ (дезоксирибонуклеотиды). Дезоксирибоза – продукт восстановления рибозы. Дезоксирибонуклеотиды образуются из рибонуклеотидов под действием фермента НДФ-редуктазы.
Источником водорода является фермент НДФ-редуктаза, содержащий две SH-группы. Регенерация восстановленной формы НДФ-редуктазы происходит с помощью цепи реакций, где непосредственным донором водорода является специальный белок – тиоредоксин, который получает два атома водорода от трипептида глутатиона, переходящего при этом в окисленную форму. Последующее восстановление окисленного
глутатиона с помощью фермента глутатионредуктазы, использующей для этого НАДФ.Н2
Так образуются все dНДФ, в том числе и dУДФ, однако в состав ДНК он не входит, а преобразуется в тимидиловые нуклеотиды.
ТМФ может образоваться как в дезоксиформе (dТМФ), так и в окси- - ТМФ. Реакцию образования (d)ТМФ катализирует фермент тимидилатсинтетаза, в состав ее кофермента входит ТГФК. Этот фермент – мишень для многих фармакологических препаратов. Постоянно тимидиловые нуклеотиды необходимы только для синтеза ДНК, поэтому угнетение этого фермента тормозит деление клеток, но не влияет на скорость синтеза информационной РНК (и-РНК) и белков. Ингибиторы тимидилатсинтетазы применяются в терапии рака.
Существуют 2 основных группы таких веществ:
Конкурентные ингибиторы - вещества, похожие на субстрат. Например, его производное - dУМФ-5-фторурацил.
Вещества, похожие на кофермент тимидилатсинтазы - ТГФК. Например, антивитамин ФК – препарат метатрексат.
Образовавшийся (d)ТМФ подвергается фосфорилированию:
(d)ТМФ (d)ТДФ (d)ТТФ.
Остальные мононуклеотиды могут быть использованы для синтеза ДНК только в трифосфатной дезоксиформе: dАТФ, dГТФ, dЦТФ.

56.распад пуриновых нуклеозидов. Образовавшиеся при гидролизе пуриновые мононуклеозиды – аденозин и гуанозин подвергаются ферментативному распаду в организме чел-ка вплоть до образования конечного продукта – мочевой к-ты, которая выводится с мочой из организма. У чел-ка, приматов, большинства животных, у птиц и некоторых рептилей мочевая к-та является конечным продуктом пуринового обмена; у др. рептилий и млекопитающих мочевая к-та расщепляется до аллантоина, а у рыб до аллантоиновой к-ты и мочевины.
Начальные этапы р-и распада пиримидиновых нуклеотидов катализируются специфическими ф-ми; конечными продуктами р-и является СО2,NH3, мочевина, бета-аланин и бетааминоизомаслянная к-та. Гидролитический путь распада пиримидинов является главным путем образования бета-аланина, который может служить источником для синтеза ансерина, корновина и коэнзима.

57.Нуклеиновые кислоты встречаются в организме не в свободном виде, а в составе нуклеопротеинов.
Молекулы нуклеиновых кислот заряжены отрицательно. Белковые компоненты нуклеопротеинов - положительно, потому что в них много аргинина и лизина. Связи между нуклеиновыми кислотами и белками - ионные.
Нуклеиновые кислоты - гетерополимеры, их мономерами являются мононуклеотиды. Мононуклеотид состоит из азотистого основания+рибоза у РНК (или дезоксирибоза у ДНК) - вместе они составляют нуклеозид, и остатка фосфорной кислоты.
БИОЛОГИЧЕСКАЯ РОЛЬ НУКЛЕИНОВЫХ КИСЛОТ.
1. ДНК: хранение генетической информации.
2. РНК:
а) хранение генетической информации у некоторых вирусов;
б) реализация генетической информации: и-РНК (м-РНК) - информационная (матричная), т-РНК (транспортная), р-РНК (рибосомальная)
в) некоторые молекулы РНК способны катализировать реакции гидролиза 3’,5’-фосфодиэфирной связи в самой молекуле РНК. Такие РНК называют рибозимами.

58. Синтез ДНК называется репликацией.
Направление фосфодиэфирных связей одной из синтезируемых полинуклеотидных цепейДНК совпадает с направлением синтеза (5\'--->3\'), поэтому она синтезируется непрерывно и сразу целиком. А у другой - не совпадает (3\'--->5\'). Поэтому она синтезируется частями. Эти части называются \"фрагменты Оказаки\". Синтезировать фрагменты Оказаки de novo (с нуля) ДНК-полимеразы не могут, поэтому для синтеза каждого фрагмента нужна \"затравка\" - праймер. Праймер - это кусочек цепи РНК. Синтез праймеров катализируют специальные ферменты - праймазы (это один из вариантов РНК-полимераз). Синтез РНК происходит на определенных участках молекулы ДНК и называется транскрипцией. В цепи ДНК существуют специальные участки: промоторы, которые указывают на начало транскрипции и терминаторы, указывающие на конец транскрипции. При транскрипции образуется высокомолекулярный предшественник РНК - первичный транскрипт. Затем здесь же, в ядре клетки, идет постсинтетическая модификация РНК - сплайсинг. Этот процесс катализируют ферменты эндонуклеазы - из первичного транскрипта вырезаются интроны. Оставшиеся экзоны сшиваются РНК-лигазами. Далее к 5\'-концу молекулы РНК присоединяется 7-метил-ГТФ (КЭП-фрагмент) - этот процесс называется \"кэпирование\". К 3\'-концу присоединяется полиадениловый \"хвост\" (полиАМФ) - реакцию катализирует полиаденилатполимераза.
Особенностью посттранскрипционной модификации рибосомальной РНК (р-РНК) является метилирование азотистых оснований.
При синтезе транспортной РНК (т-РНК) к концу каждой молекулы присоединяется последовательность из трех мононуклеотидов: ЦМФ-ЦМФ-АМФ (ЦЦА). Эта последовательность необходима для присоединения аминокислоты к т-РНК.
СИНТЕЗ МОНОНУКЛЕОТИДОВ
Для синтеза нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ).
Особенностью синтеза пуриновых нуклеотидов является то, что их структура пуринового азотистого основания постепенно достраивается на рибозофосфате.
При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура азотистого основания, а затем в готовом виде присоединяется к рибозофосфату.

62. Транскрипция – пр-сс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре. Определенный уч-к молекулы ДНК деспирализируется, водородные связи м-у цепочками разрушаются под действием ф-ов. На одной цепи ДНК, как на матрице, по принципу комплементарности из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются р-, т- и и-РНК.
Ц-А-Г-Т-Г-А
УЧАСТОК ДНК
Г-Т-Ц-А-Ц-Т

Ц-А-Г-У-Г-А УЧАСТОК МОЛЕКУЛЫ и-РНК.
После синтеза и-РНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомах.

63. Генетический код. А.К. последовательность в молекуле белка зашифрована в виде нуклеотидной последовательности в молекуле ДНК и наз-ся ген-им кодом. Уч-к ДНК, ответственный за синтез одного белка наз-ся геном.
Хар-ка генетического кода.
Триплетность: каждой а.к. соответствует сочетание только трех нуклеотидов. Всего таких сочетаний 64. Из них 61 код смысловой, т.е. соответствует 20 а.к., а три кода бессмысленные – стоп-коды, которые не соответствуют а.к., а заполняют промежутки м-у генами.
Однозначность – каждый триплет соответствует только одной а.к..
Код вырожден – каждая а.к. имеет больше чем один код. Например у а.к. глицин – 4 кода: ЦЦА, ЦЦГ, ЦЦТ, ЦЦЦ, чаще у а.к. из 2-3.
Универсальность – все живые организмы имеют один и тот же генетический код а.к..
Неприрывность – м-у кодами нет промежутков.
Неперекрываемость – конечный нуклеотид одного кода не может служить началом другого.

64. Трансляция – процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где и-РНК является посредником в передачи ген-ой инф-и о первичной структуре белка.
Биосинтез белка состоит из ряда р-й.
Активирование и кодирование а.к.. т-РНК имеет вид клеверного листа, в центральном листе которого располагается триплетный антикодон, соответствующий коду определенной а.к. и кадону на и-РНК. Каждая а.к. соединяется соединяется с соответствующей т-РНК за счет энергии АТФ. образуется комплекс т-РНК-а.к., который поступает на рибосомы.
Образование комплекса и-РНК-рибосома, и-РНК соединяется в цитоплазме с рибосомой на гр. ЭПС.
Сборка полипептидной цепи. Т-РНК с а.к. по принципу комплементарности антикодона с кодоном соединяется с и-РНК и входит в рибосому. В пептидном центре рибосомы м-у двумя а.к. образуется пептидная связь, а освободившаяся т-РНК покидает рибосому. При этом и-РНК каждый раз продвигается на один триплет, внося новую т-РНК – а.к. и вынося новую освободившуюся т-РНК. Весь пр-сс обеспечивается энергией АТФ. одна и-РНК может соединятся с несколькими рибосомами, образуя полисому, где идет обновременно синтез многих молекул одного белка. Синтез заканчивается, когда на и-РНК начинаются бессмысленные кодоны (не соответствуют а.к., а заполняют промежутки м-у генами). Рибосомы отделяются от и-РНК, с них снимаются полипептидные цепи. Т.к. весь синтез протикает на гЭПС, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную стр-у и превращаются в молекулы белка. Все р-и синтеза катализируются спец. ф-ми при участии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме киш. Палочки белок из 300 а.к. синтезируется 15-20 с..
Суммарные р-и биосинтеза белка.
ДНК (транскрипция в ядре) ---- и-РНК
Кодирование, активирование – т-РНК (под действием АТФ в цитоплазме) ---- т-РНК-а.к..
и-РНК + рибосомы
(трансляция на гЭПС) --- белок.
т-РНК-а.к.

67. В И Т А М И Н Ы
Витамины - это низкомолекулярные органические вещества разнообразного строения. Объединены в одну группу по следующим признакам:
1. Витамины абсолютно необходимы организму и в очень небольших количествах.
2. Витамины не синтезируются в организме и должны поступать извне или синтезироваться микрофлорой кишечника.
Витамины играют одинаковую роль во всех формах жизни, но высшие животные утратили способность к их синтезу. Например, аскорбиновая кислота (витамин ”С”) не синтезируется в организмах человека, обезьян и морской свинки, так как в процессе эволюции была утеряна ферментная система синтеза этого витамина из глюкозы. АВИТАМИНОЗ - это заболевание, которое развивается при полном отсутствии того или иного витамина в организме. В настоящее время авитаминозы обычно не встречаются, а бывают ГИПОВИТАМИНОЗЫ при недостатке витамина в организме.
КЛАССИФИКАЦИЯ ВИТАМИНОВ
1. Водорастворимые витамины. К этой группе относят витамины С, Р, В1, В2, В3, ВC, В6, В12, РР, Н.
2. Жирорастворимые витамины: А, Д, Е, К.
ПРИЧИНЫ РАЗВИТИЯ ГИПО- И АВИТАМИНОЗОВ
Все причины можно разделить на внешние и внутренние.
ВНЕШНИЕ причины гиповитаминозов:
1. Недостаточное содержание витамина в пище (при неправильной обработке пищи, при неправильном хранении пищевых продуктов)
2. Состав рациона питания (например, отсутствие в рационе овощей и фруктов)
3. Не учитывается потребность в том или ином витамине. Например, при белковой диете возрастает потребность в витамине “РР” (при обычном питании он может частично синтезироваться из триптофана). Если человек потребляет много белковой пищи, то может увеличиться потребность в витамине “В6“ и снизиться потребность в витамине РР.
4. Социальные причины: урбанизация населения, питание исключительно высокоочищенной и консервированной пищей; наличие антивитаминов в пище. Социальные причины развития авитаминозов существуют в мире. Например, в отдаленных районах Севера, в рационе людей мало овощей и фруктов. Урбанизация также имеет значение, т.к. в пищу потребляется много консервированных и рафинированнных продуктов. В крупных городах люди недостаточно обеспечены солнечным светом - поэтому может быть гиповитаминоз Д.
ВНУТРЕННИЕ причины гиповитаминозов:
1. Физиологическая повышенная потребность в витаминах, например, в период беременности, при тяжелом физическом труде.
2. Длительные тяжелые инфекционные заболевания, а также период выздоровления;
3. Нарушение всасывания витаминов при некоторых заболеваниях ЖКТ, например, при желчнокаменной болезни нарушается всасывание жирорастворимых витаминов;
4. Дисбактериоз кишечника. Имеет значение, так как некоторые витамины синтезируются полностью микрофлорой кишечника (это витамины В3, Вc, В6, Н, В12 и К);
5. Генетические дефекты некоторых ферментативных систем. Например, витамин Д-резистентный рахит развивается у детей при недостатке ферментов, участвующих в образовании активной формы витамина Д (1,25-диоксихолекальциферола).

68. ВИТАМИН B1 (тиамин, антиневритный)
Производное вит.В1 - ТДФ (ТПФ) является коферментом пируватдегидрогеназного комплекса (фермента пируваткарбоксилазы), альфа-кетоглутаратдегидрогеназного комплекса и фермента транскетолазы (фермента альфа-тотаратдекарбоксилазы), а также входит в состав кофермента транскетолаз - ферментов неокислительного этапа ГМФ-пути..
При недостаточности вит.В1 может возникнуть болезнь \"бери-бери\", характерная для тех стран Востока, где основным продуктом питания служит очищенный рис и кукуруза. Для этого заболевания характерна мышечная слабость, нарушение моторики кишечника, потеря аппетита, истощение, периферический неврит (характерный признак - человеку больно вставать на стопу - больные ходят “на цыпочках”), спутанность сознания, нарушения работы сердечно-сосудистой системы. При \"бери-бери\" повышается содержание пирувата в крови.
Пищевые источники витамина В1 - ржаной хлеб. В кукурузе, рисе, пшеничном хлебе витамин В1 практически отсутствует. Это объясняется тем, что в зерне ржи тиамин распределен по всему зерну, а в других злаках он содержится только в оболочке зерен.Суточная потребность - 1.5 мг/сутки.

69. ВИТАМИН В2 (рибофлавин)
Витамин В2 входит в состав флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД) - простетических групп флавиновых ферментов.
Его биологическая функция в организме - участие в окислительно-восстановительных реакциях в составе флавопротеидов (ФП).
Недостаточность этого витамина часто встречается в России. Особенно часто бывает у людей, которые не употребляют в пищу черный ржаной хлеб. Проявление гиповитаминоза: ангулярные дерматиты в углах рта (“заеда”), глаз. Часто это сопровождается кератитами (воспаление роговицы). В очень тяжелых случаях бывает анемия. Очень часто сочетаются сочетанные гиповитаминозы витаминов \"В2\" и \"РР\",так как эти витамины содержатся в одних и тех же продуктах.
Пищевые источники: ржаной хлеб, молоко, печень, яйца, овощи желтого цвета, дрожжи. Суточная потребность: 2-4 мг/сутки.

70. ПАНТОТЕНОВАЯ КИСЛОТА (витамин В3)
Молекула пантотеновой кислоты состоит из бета-аланина и 2,4-дигидрокси-диметил-масляной кислоты. Формулу знать необязательно.
Важность этого витамина в том, что он входит в состав HS-KoA (кофермента ацилирования).
Строение КоА: а) тиоэтиламин б) пантотеновая кислота в) 3-фосфоаденозин-5-дифосфат.
HSКоА - кофермент ацилирования, то есть входит в состав ферментов, которые катализируют перенос ацильных остатков. Поэтому В3 участвует в бета-окислении жирных кислот, окислительном декарбоксилировании альфа-кетокислот, биосинтезе нейтрального жира, липоидов, стероидов, гема, ацетилхолина.
При недостатке пантотеновой кислоты при дисбактериозе у человека развиваются дерматиты, в тяжелых случаях - изменения со стороны желез внутренней секреции, в том числе надпочечников. Также наблюдается депигментация волос, истощение.
Пищевые источники: яичный желток, печень, дрожжи, мясо, молоко.
Суточная потребность: 10мг/сут.

71. ВИТАМИН РР (антипеллагрический)
Химическое название: никотинамид. Входит в состав НАД и НАДФ, то есть входит в состав коферментов никотинамидных дегидрогеназ.
Его роль - участие в окислительно-восстановительных реакциях. При недостатке РР развивается пеллагра. При пеллагре наблюдаются три “Д”:- дерматит- диарея - деменция (поражение центральной нервной системы)
Источники РР: мясо, бобовые, орехи, рыба и вообще продукты, богатые белком.
Витамин РР может частично синтезироваться из триптофана.
Если человек съедает много белковой пищи, то потребность в этом витамине снижается. Из 60 гр. белка может синтезироваться 1 мг витамина РР.
Суточная потребность: 15-25 мг/сутки.

72. ВИТАМИН В6 (пиридоксин).
В6 в форме пиридоксальфосфата является простетической группой трансаминаз и декарбоксилаз аминокислот. Он необходим и для некоторых реакций обмена аминокислот. Поэтому при авитаминозе В6 наблюдаются нарушения обмена аминокислот.В6 также участвует в реакциях синтеза гема гемоглобина (синтез d-аминолевулиновой кислоты). Поэтому при недостатке В6 у человека развивается анемия.
Кроме анемии, наблюдаются дерматиты. Недостаток В6 может развиться у больных туберкулезом, потому что этих больных лечат препаратами, синтезированными на основе изониазида - это антагонисты витамина В6.
Пищевые источники: ржаной хлеб, горох, картофель, мясо, печень, почки.
Суточная потребность взрослого человека: 0.15-0.20 мг.

73. ФОЛИЕВАЯ КИСЛОТА (ВC)
В составе 3 структурных единицы: птеридин, ПАБК (парааминобензойная кислота) и глутаминовая кислота.
Часто ПАБК (парааминобензойную кислоту) тоже называют витамином. Но это неверно. ПАБК - это фактор роста для микроорганизмов, которые синтезируют фолиевую кислоту.
Активный С1 извлекается из глицина или серина с помощью фермента, в небелковой части которого содержится витамин Вc - фолиевая кислота. Фолиевая кислота два раза восстанавливается в организме (к ней присоединяется водород).
ТГФК является коферментом ферментов, переносящих одноуглеродные радикалы.
Из метилен-ТГФК (тетрагирофолиевая кислота) могут образовываться все другие формы активного С1: формил-ТГФК, метил-ТГФК, метен-ТГФК, оксиметил-ТГФК в результате реакций окисления или восстановления метилен- ТГФК.
Фолиевая кислота в виде тетрагидрофолиевой кислоты является коферментом, участвующим в ферментативных реакциях, связанных с переносом активных одноуглеродных радикалов. Например: биосинтез пуриновых и пиримидиновых мононуклеотидов.
При авитаминозе у человека наблюдается макроцитарная анемия, при которой нарушен синтез ДНК в клетках красного костного мозга, для больных характерна потеря веса.
Пищевые источники: зеленые листья овощей, дрожжи, мясо, шпинат.
Авитаминозы встречаются редко, так как потребность в этом витамине компенсируется за счет микрофлоры кишечника. При некоторых заболеваниях кишечника, когда возникают дисбактериозы, нарушается всасывание фолиевой кислоты.
Суточная потребность: 0.2 - 0.4 мг.

74. ВИТАМИН “С” (аскорбиновая кислота, антицинготный, антискорбутный). В 1932 г. впервые выделен из сока лимона, через два года искусственно синтезирован. Важное свойство - способность аскорбиновой кислоты легко окисляться.
Биологическая роль витамина “С” (связана с его участием в окислительно-восстановительных реакциях)
1. Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена. Коллаген может синтезироваться и без участия витамина С, но такой коллаген не является полноценным (не формирутся его нормальная структура). Поэтому при недостатке витамина С ткани, содержащие много коллагена, становятся непрочными, ломкими. В первую очередь нарушается структура стенок сосудов, повышается их проницаемость, наблюдаются кровоизлияния под кожу и под слизистые оболочки.
2. Участвует в синтезе стероидных гормонов надпочечников.
3. Необходим для всасывания железа.
4. Участвует в неспецифической иммунной защите организма.
Авитаминоз “С” - цинга. Проявления цинги: болезненность, рыхлость и кровоточивость десен, расшатывание зубов, нарушение целостности капилляров - подкожные кровоизлияния , отечность и болезненность суставов, нарушение заживления ран, анемия. Иногда цинга развивается у новорожденных на искусственном вскармливании пастеризованным молоком, в которое не добавлен витамин С. В основе всех изменений при цинге, за исключением анемии, лежит нарушение синтеза коллагена. Анемия связана с нарушением всасывания железа.
В настоящее время цинга не распространена, но весной у многих людей наблюдается недостаток (гиповитаминоз) витамина “С”, что проявляется, например, повышенной утомляемостью, понижением иммунитета.
Основные источники витамина “С”: свежие зеленые овощи и фрукты.
Следует помнить, что витамин С легко разрушается при нагревании, особенно в щелочной среде в присутствии кислорода, ионов железа и меди. Хорошо сохраняется в кислой среде (в квашеной капусте, в клюкве, в ягодах черной смородины и плодах шиповника). При длительном хранении овощей и фруктов содержание в них витамина “С” уменьшается.
Источником витамина С является также хвоя ели и сосны.
Суточная потребность - около 100 мг в сутки.
Лечебная доза - до 1-2 г в сутки.

75. ВИТАМИН “А” ( ретинол, антиксерофтальмический)
Необходимо знать формулу витамина А.
Наиболее ранний и специфический признак гиповитаминоза А - гемералопия (\"куриная слепота\") - нарушение сумеречного зрения. Возникает из-за недостатка зрительного пигмента - родопсина. Родопсин содержит в качестве активной группы ретиналь (альдегид витамина А) - находится в палочках сетчатки. Эти клетки (палочки) воспринимают световые сигналы низкой интенсивности. РОДОПСИН = опсин (белок) + цис-ретиналь.
При возбуждении родопсина светом, цис-ретиналь, в результате ферментативных перестроек внутри молекулы переходит в полностью-транс-ретиналь (на свету). Это приводит к конформационной перестройке всей молекулы родопсина. Родопсин диссоциирует на опсин и транс-ретиналь, что является пусковым механизмом, возбуждающим в окончаниях зрительного нерва импульс, который затем передается в мозг.
В темноте, в результате ферментативных реакций транс-ретиналь вновь превращается в цис-ретиналь и, соединяясь с опсином, образует родопсин.
Витамин А также влияет на процессы роста и развития покровного эпителия. Поэтому при авитаминозе наблюдается поражение кожи, слизистых оболочек и глаз, которое проявляется в патологическом ороговении кожи и слизистых. У больных развивается ксерофтальмия - сухость роговой оболочки глаза, т.к. происходит закупорка слезного канала в результате ороговения эпителия. Так как глаз перестает омываться слезой, которая обладает бактерицидным действием, развиваются конъюнктивиты, изъязвление и размягчение роговицы -кератомаляция. При авитаминозе А может быть также поражение слизистой ЖКТ, дыхательных и мочеполовых путей. Нарушается устойчивость всех тканей к инфекциям. При развитии авитаминоза в детстве - задержка роста.
В настоящее время показано участие витамина А в защите мембран клеток от окислителей - т.е. витамин А обладает антиоксидантной функцией.
Витамин А запасается в печени.
Пищевые источники - печень морских рыб и млекопитающих, желток яиц, цельное молоко, рыбий жир. Овощи и фрукты красно-оранжевого цвета (томаты, морковь и др.) содержат много каротина - водорастворимого предшественника витамина А, имеющего в молекуле 2 иононовых кольца.
В настоящее время, гиповитаминоз А наблюдается у людей с заболеваниями кишечника, поджелудочной железы, при нарушении желчевыделительной функции печени, то есть при заболеваниях, при которых нарушается всасывание жира. Высокие дозы витамина А могут приводить к токсическим эффектам. Характерные проявления гипервитаминоза - воспаление глаз, гиперкератоз, выпадение волос, диспептические явления.
Суточная потребность в витамине А - 1-2.5 мг, в каротине - в 2 раза больше.

76. ВИТАМИН Д (холекальциферол, антирахитный)
Сам витамин Д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина Д3).
Синтез активной формы протекает в два этапа - в печени присоединяется оксигруппа в положении 25, а затем в почках - оксигруппа в положении 1. Из почек активный витамин Д3 переносится в другие органы и ткани - главным образом в тонкий кишечник и в кости, где витамин Д участвует в регуляции обмена Са и Р. Недостаток витамина Д приводит к развитию нарушений фосфорно-кальциевого обмена и процессов окостенения. В результате у детей развивается рахит, связанный с недостатком Са и Р. Характерные признаки рахита - остеомаляция (\"размягчение\" костей - запаздывание окостенения), запаздывание закрытия родничков, деформации грудной клетки, позвоночника, конечностей. У таких детей снижен мышечный тонус, наблюдается раздражительность, потливость, выпадение волос.
У взрослых при недостатке витамина Д наблюдается остеопороз - разрежение костной ткани в результате вымывания солей кальция из скелета.
Потребность в витамине Д повышается у беременных.
При благоприятных условиях витамин Д может синтезироваться в организме человека из предшественника - 7-дегидрохолестерина под действием ультрафиолетовых лучей (фотохимическая реакция) в результате разрыва связи в кольце В.
Пищевые источники - рыба, рыбий жир, печень, сливочное масло, желток яиц.
Суточная доза витамина Д3 - 10-20 мкг. Высокие дозы витамина Д (выше 1,5 мг в сутки) крайне токсичны. При гипервитаминозе кроме интоксикации наблюдается отложение гидроксиапатита в некоторых внутренних органах (кальцификация почек, кровеносных сосудов).

77. ВИТАМИН К (филлохинон).
Витамин К необходим для нормального синтеза протромбина (фактор II) - предшественника одного из белков системы свертывания - тромбина. Тромбин - это фермент, который катализирует реакцию превращения фибриногена в фибрин - основу кровяного сгустка при активации системы светрывания крови.
При недостатке витамина К синтезируется дефектная молекула протромбина и ряда других факторов свертывания крови. Причина - нарушение ферментативного карбоксилирования глутаминовой кислоты, необходимой для связывания Са2+ белками системы свертывания. Основное проявление недостаточности - нарушение свертывания крови, в результате которого происходят самопроизвольные паренхиматозные и капиллярные кровотечения.
Авитаминоз, как правило связан с нарушением выделения желчи в ЖКТ (при желчнокаменной болезни).
Пищевые источники - ягоды рябины, капуста, арахисовое масло и др. растительные масла. Витамин К также синтезируется микрофлорой кишечника, поэтому одна из причин гиповитаминозов при недостатке витамина в пище - дизбактериоз кишечника (например, при антибиотикотерапии).
Если больной страдает гиповитаминозом К, например, при некоторых видах желтух, то операции - даже удаление зуба - могут сопровождаться длительным кровотечением.
Синтезирован водорастворимый аналог витамина К - викасол, который используют при лечении гиповитаминозов, связанных с нарушением всасывания витамина К из кишечника.
Известны природные антивитамины К - например, ДИКУМАРИН, САЛИЦИЛОВАЯ кислота, которые применяют при лечении тромбозов, т.к. антивитамины К способны снижать количество протромбина в крови.
Суточная потребность точно не установлена, т.к. витамин синтезируется микрофлорой. Считают, что в сутки потребность около 1 мг.

78. ВИТАМИН Е (токоферол, витамин размножения).
Является антиоксидантом. При недостаточности витамина Е - дегенеративные изменения в печени, нарушение функций биологических мембран. Витамин Е предохраняет липиды клеточных мембран от окисления активными формами кислорода. Авитаминоз проявляется при очень длительном голодании или при стойком нарушении желчевыделительной функции печени (нарушение всасывания жиров). При этом наблюдаются шелушение кожи, мышечная слабость, стерильность - нарушением функции размножения. Поскольку витамин Е широко распространен в природе (растительные масла, семена пшеницы и др. злаков, сливочное масло), то авитаминоз встречается редко.Суточная потребность - около 10-30 мг.

79. МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ.
Гормоны оказывают влияние на клетки-мишени.
КЛЕТКИ-МИШЕНИ - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.
БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЕРЕДАЧИ СИГНАЛА ОТ ГОРМОНА В КЛЕТКУ-МИШЕНЬ.
Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:
- \"узнавание\" гормона;
- преобразование и передачу полученного сигнала в клетку.
Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?
Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.
Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания - эндокринные нарушения. Есть три типа таких заболеваний:
1. Связанные с недостаточностью синтеза белков-рецепторов.
2. Связанные с изменением структуры рецептора - генетических дефекты.
3. Связанные с блокированием белков-рецепторов антителами.
МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ НА КЛЕТКИ-МИШЕНИ.
В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.
Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют \"ВТОРЫМИ ПОСРЕДНИКАМИ\". Молекулы гормонов очень разнообразны по форме, а \"вторые посредники\" - нет.
Надёжность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.
Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов? Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.
Разберем более подробно механизмы действия гормонов и внутриклеточных посредников. Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:
1. АДЕНИЛАТЦИКЛАЗНАЯ (ИЛИ ГУАНИЛАТЦИКЛАЗНАЯ) СИСТЕМЫ
2. ФОСФОИНОЗИТИДНЫЙ МЕХАНИЗМ
НЕОРГАНИЧЕСКИЕ МИНЕРАЛЬНЫЕ ВЕЩЕСТВА.
Кроме основных элементов, из которых состоят белки, жиры, углеводы и нуклеиновые кислоты, человек должен получать с пищей другие химические элементы.
Основные элементы: C, O, H, N, S и P. Но, кроме этого, необходимы еще приблизительно 20 минеральных веществ.
Недостаток в том или ином минеральном веществе встречается редко, поскольку минеральные вещества в достаточном количестве содержатся в пище и питьевой воде. Но для некоторых минеральных веществ имеются эндемические зоны, которые характеризуются недостатком какого-либо минерального элемента (например, иода или фтора).
Минеральные вещества - это те вещества, которые остаются в золе после сжигания трупа. После сжигания трупа взрослого человека остается около 3 кг золы.
В настоящее время в нашем организме найдено около 70 различных элементов, исключая элементы трансуранового ряда.
Элементы, встречающиеся в организме, делят на:
а) МАКРОЭЛЕМЕНТЫ - их содержание составляет граммы, десятки или сотни граммов. Это Na, K, Ca, P, S, Cl.
б) МИКРОЭЛЕМЕНТЫ. Содержание их в организме исчисляется миллиграммами и десятками миллиграммов. Это Fe, Cu, Zn, Mo, Co, F, I, Br и некоторые другие. Для нас более важна другая классификация.
Минеральные элементы можно классифицировать и по их необходимости для жизнедеятельности организма.
Те элементы, которые абсолютно необходимы для организма и выполняют в нем специфические функции, называют \"БИОЭЛЕМЕНТЫ\".
Те элементы, функции которых в организме неизвестны, обозначаются как \"СЛУЧАЙНЫЕ ПРИМЕСИ\". Пример \"случайной примеси\" - золото (Au).
Минеральные вещества в организме распределены очень неравномерно. Самая твердая ткань нашего организма - это ткань зуба, в ней 98% минеральных веществ, а во внеклеточной жидкости содержится всего 0.5-1 % минеральных веществ. Фтора больше всего в зубной эмали, иода - в щитовидной железе, железа - в красном костном мозге. Большинство минеральных элементов концентрируется в отдельных тканях.
Равномерно распределены: Mg, Al, Br, Se.
РОЛЬ МИНЕРАЛЬНЫХ ВЕЩЕСТВ.
1. СТРУКТУРНАЯ РОЛЬ.
Эту роль выполняют не только нерастворимые соли в костной ткани и ткани зуба, но и, например, фосфор, входящий в состав фосфолипидов клеточных мембран.
2. ЭНЕРГЕТИЧЕСКАЯ РОЛЬ
Сами минеральные вещества не являются для нас источниками энергии, так как выводятся из организма в той же форме, как и поступают. Но минеральные вещества являются необходимыми участниками процессов преобразования и превращения энергии в организме. Примеры: фосфор входит в состав макроэргов, железо - в состав цитохромов.
3. РЕГУЛЯТОРНАЯ РОЛЬ
Минеральные вещества участвуют:
а) в поддержании постоянства осмотического давления в крови и в клетках.
б) в поддержании постоянства pH крови и тканей
Это происходит благодаря существованию двух основных буферных систем организма:
а) бикарбонатная
б) фосфатная
Минеральные вещества входят в состав биорегуляторов нашего организма: ферментов, гормонов, витаминов.
Каждый из минеральных компонентов имеет свою роль и не может быть заменен другим.

89.ИНСУЛИН Основные механизмы действия инсулина:
1. Инсулин повышает проницаемость плазматических мембран для глюкозы. Этот эффект инсулина является главным лимитирующим звеном метаболизма углеводов в клетках.
2. Инсулин снимает тормозящее действие глюкокортикостероидов на гексокиназу.
3. На генетическом уровне инсулин стимулирует биосинтез ферментов метаболизма углеводов, в том числе ключевых ферментов.
4. Инсулин в клетках жировой ткани ингибирует триглицеридлипазу - ключевой фермент распада жиров.
Регуляция секреции инсулина в кровь происходит с участием нейро-рефлекторных механизмов. В стенках кровеносных сосудов есть особые хеморецепторы, чувствительные к глюкозе. Повышение концентрации глюкозы в крови вызывает рефлекторную секркцию инсулина в кровь, глюкоза проникает в клетки и ее концентрация в крови снижается.
Остальные гормоны вызывают повышение концентрации глюкозы в крови.

90. ГЛЮКОКОРТИКОСТЕРОИДЫ (ГКС).
Относятся к стероидным гормонам, поэтому обладают внутриклеточным типом взаимодействия с клеткой-мишенью. Проникая в клетку-мишень, они взаимодействуют с клеточным рецептором и обладают следующими эффектами:
1. Ингибируют гексокиназу - таким образом они замедляют утилизацию глюкозы. В результате концентрация глюкозы в крови возрастает.
2. Данные гормоны обеспечивают процесс гликонеогенеза субстратами.
3. На генетическом уровне усиливают биосинтез ферментов катаболизма белков

91. ЙОДСОДЕРЖАЩИЕ ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ.
Трииодтиронин (Т3)
Тироксин (Т4)
Это гормоны - производные аминокислоты тирозина. Обладают внутриклеточным типом взаимодействия с клетками-мишенями. Рецептор Т3/Т4 находится в ядре клетки. Поэтому эти гормоны усиливают биосинтез белков на уровне транскрипции. Среди этих белков - окислительные ферменты, в частности разнообразные дегидрогеназы. Кроме того, они стимулируют синтез АТФаз, т.е. ферментов, которые разрушают АТФ. Для процессов биоокисления требуются субстраты - продукты окисления углеводов и жиров. Поэтому при увеличении продукции этих гормонов наблюдается усиление распада углеводов и жиров. Гиперфункция щитовидной железы называется Базедова болезнь или тиреотоксикоз. Один из симптомов этого заболевания - понижение массы тела. Для этого заболевания характерно повышение температуры тела. В опытах in vitro наблюдается разобщение митохондриального окисления и окислительного фосфорилирования при высоких дозах этих гормонов.

92. БИОХИМИЯ КРОВИ.
Организм человека имеет специальные системы, которые осуществляют непрерывную связь между органами и тканями и обмен организма продуктами жизнедеятельности с окружающей средой. Одной из таких систем, наряду с интерстициальной жидкостью и лимфой, является кровь.
ФУНКЦИИ КРОВИ.
1. Питание тканей и выделение продуктов метаболизма.
2. Дыхание тканей и поддержание кислотно-щелочного баланса и водно-минерального баланса.
3. Транспорт гормонов и других метаболитов.
4. Защита от чужеродных агентов.
5. Регуляция температуры тела путем перераспределения тепла в организме.
Если свежевзятую кровь оставить в стеклянной посуде при комнатной температуре (200С), то через некоторое время образуется кровяной сгусток (тромб), после формирования которого останется жидкость желтого цвета - сыворотка крови. Она отличается от плазмы крови тем, что в ней нет фибриногена и некоторых белков (факторов) системы свертывания крови. В основе свертывания крови лежит превращение фибриногена в нерастворимый фибрин. В нитях фибрина запутываются эритроциты. Нити фибрина можно получить путем длительного перемешивания свежевзятой крови, наматывая на палочку образующийся фибрин. Так можно получить дефибринированную кровь.
Для получения цельной крови, пригодной для переливания больному, способной храниться длительное время, в емкость для взятия крови необходимо добавить антикоагулянты (вещества, препятствующие свертыванию крови).
Масса крови в сосудах человека составляет примерно 20% от массы тела. 55% массы крови составляет плазма, остальная часть приходится - форменные элементы плазмы крови (эритроциты, лейкоциты, лимфоциты, тромбоциты).
Клеточные элементы крови находятся в жидкой среде - плазме крови.
К Л Е Т К И К Р О В И – эритроциты (в 1мл. 5*109, красные кровяные клетки лишенные ядра. Образуются в красном костном мозге. Продолжительность жизни 125 дней, разрушаются в селезенки и в печени. Почти целиком заполнены гемаглабином). Лейкоциты (образ-ся в лимф-й ткани. Продолжительность жизни около 10 лет. Образуют антитела). Делятся на лимфоциты (26%), моноциты (7%) способны периваривать кл-ки бактерий, гранулоциты (70%): нейтрофилы (ф-я фагоцитоза), эозинофилы, базофилы.
Тромбоциты – ф-я тромбоцитоза, образуется из мегакариоцитов костного мозга.

93. СОСТАВ ПЛАЗМЫ КРОВИ:
90% - вода
6-8% - белки
2% - органические небелковые соединения
1% - неорганические соли
Натрий – основной осмотически активный ион внеклеточного пространства. В плазме концентрация Na+ приблизительно в 8 раз выше (132-150 ммоль/л), чем в эритроцитах.
При гипернатриемии развивается синдром, связанный с гипергидратацией орг-ма. Накопление натрия в плазме крови наблюдается при паринхиматозном нефрите, у больных с врожденной сердечной недостаточностью, при первичном и вторичном гипераальдостеронизме. .
Гипонатриемия сопровождается дегидратацией организма. Коррекция натриевого обмена осуществляется введением раствора натрия хлорида с расчетом дефицита его в неклеточном пространстве и клетке.
Калий. Концентрация К+ в плазме колеблется от 3.8 до 5.4 ммоль/л; в эритроцитах его в20 раз больше. Уровень калия в клетке значительно выше, чем во внеклеточном пространстве, поэтому при заболеваниях сопровождающихся усиленным клеточным распадом или гемолизом, содержание калия в сыворотке крови уменьшается.
Гиперкалиемия – при острой почечной недостаточности и гипоф-и коры надпочечников. Недостаток альдостерона приводит к усилению выведения с мочой натрия и воды и задержке в организме калия.
При усиленной продукции альдостерона возникает гипокалиемия. Развивающаяся гипокалиемия вызывает тяжелые нарушения работы сердца.
Кальций принимает активное участие в механизме нервно-мышечной возбудимости как антагонист К+ , мышечного сокращения, свертывания крови образует структурную основу костного скелета, влияет на проницаемость кл-х м-н.
Гиперкальциемия наблюдается при развитии опухолей в костях, гиперплазии, или аденоме околощитовидных желез. Кальций поступает в плазму из костей и они становятся ломкими. Гипокальциемия наблюдается при гипопаратиреозе. Выпадение ф-й околощитовидных желез приводит к резкому снижению содержания К+ в крови, что может сопровождаться судорожными приступами. Понижение содержания К в плазме отмечают при рахите, механической желтухе, нефрозах, глорулонефритах.
Фосфор. В клинике при исследовании крови различают следующие фракции фосфора: общий фосфат, кислоторастворимый фосфат, липоидный фосфат и неорганический фосфат. Для клинических целей чаще пользуются определением неорганического фосфата в плазме. Его содержание в плазме увеличивается при гипопаратиреозе, гипевитоминозе витамина Д, при приеме тироксина, облучении организма УФ лучами, при острой желтой атрофии печени, миеломе, лейкозах.
Гипофосфатемия хар-на для рахита. Снижение уровня неорганического фосфата в плазме отмечается на ранних стадиях рахита, когда клинические симптомы недостаточно выражены. Гипофосфатемия наблудается при введении инсулина, гиперпаратиреозе, остеомаляции.
Железо. (0.02 ммоль/л) Ежедневно в процессе распада гемоглобина освобождается около 25 мг. Железа, столько же потребляется при его синтезе. Повышение содержания железа в плазме наблюдается при ослаблении синтеза гемоглобина или усиленном распаде эритроцитов.
Недостаток железа в организме может вызвать нарушение последнего этапа синтеза гемма – превращение протопорфирина 9 в гемм. В результате развивается анемия, сопровождающаяся увеличением содержания порфиринов в эр-х.

95. Кислотно - основное равновесие – солтношение концентраций водородных и гидроксильных ионов в биологических средах.
Состоянию нормы соответствует определенный диапазон колебаний рН крови – с 7.37 до 7.44 со средней величеной 7.40. Регуляторными системами, которые обеспечивают постоянство рН крови являются буферные с-мы.
Бикарбонатная – самая управляемая с-ма клеточной жидкости и крови. Состоит из углекислоты и бикарбонатов. Механизм её действия заключается в том, что при выделении в кровь больших кол-в кислых продуктов водородные ионы соединяются с анионами бикарбоната, что приводит к образованию слабодиссациирующей угольной к-ты, избыток которой сразу разлагается на Н2О и СО2, который удаляется ч-з легкие при гипервентиляции. И так, несмотря на снижение уровня концентрации бикарбоната в крови, нормальное соотношение м-у концентрацией Н2СО3 и бикарбоната (1:20) сохраняется. рН крови остается в норме. Если в крови увеличивается кол-во основных ионов, то они соединяются со слабой угольной к-той образуя ионы бикарбоната и воду. Для сохранения нормальных соотношений основных компонентов буферной с-мы в этом случае подключаются физиологические механизмы регуляции кислотноосновного состояния: происходит задержка в плазме крови некоторого количестваСО2 в результате гиповентиляции легких, а почки начинают выделять основные соли в большем кол-ве.
Фосфатная. Буферное действие этой системы основано на возможности связывания водородных ионов ионами НРО42- с образованием Н2РО4-(Н+ + НПО42- --- Н2РО4-), а так же на взаимодействие ионов ОН- с ионами Н2РО4- (ОН- + Н2РО42- --- НРО42- + Н2О). эта система находится в тесной связи с бикарбонатной.
Белковая. При сдвиге рН в щелочную сторону диссоциация основных групп угнетается и белок ведет себя как к-та. Связывая основания эта к-та дает соль. С увеличением рН возрастает кол-во белков в ф-ме соли, а при уменьшении растет количество белков плазмы в ф-ме к-ты.
Гемоглобиновая – самая мощная с-ма крови. Участие гемоглобина в регуляции рН крови связана с его ф-ей – транспорт О2. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от его насыщения О2. При насыщении он становится боле сильной к-той(ННbО2) и увеличивает отдачу в р-р ионов Н2. если гемоглобин отдает О2, он становится очень слабой органической к-той (ННb).
Нарушение кислотно - основное равновесия – ацидоз.

96. БЕЛКОВЫЕ КОМПОНЕНТЫ ПЛАЗМЫ КРОВИ
Методом высаливания можно получить три фракции белков плазмы крови: альбумины, глобулины, фибриноген. Электрофорез на бумаге позволяет разделить белки плазмы крови на 6 фракций:
Альбумины - 54-62%, Глобулины: 1-глобулины 2,5-5%, 2-глобулины 8,5-10%, -глобулины 12-15%, -глобулины 15,5-21%,фибриноген (остается на старте) - от 2 до 4%.
Современные методы позволяют получить свыше 60 индивидуальных белков плазмы крови. Количественные соотношения между белковыми фракциями постоянны у здорового человека. Иногда нарушаются количественные соотношения между различными фракциями плазмы крови. Это явление называется ДИСПРОТЕИНЕМИЯ. Бывает, что содержание общего белка плазмы при этом не нарушается.
Иногда содержание общего белка плазмы понижается. Такое явление известно как ГИПОПРОТЕИНЕМИЯ. Может развиться: а) при длительном голодании; б) когда есть патология почек (потеря белка с мочой).
Реже, но иногда встречается ГИПЕРПРОТЕИНЕМИЯ - повышение содержания белка в плазме выше, чем 80г/л. Такое явление характерно для состояний, при которых происходит значительные потери жидкости организмом: неукротимая рвота, профузный понос (при некоторых тяжелых инфекционных заболеваниях: холера, тяжелая форма дизентeрии).
АЛЬБУМИНЫ
Альбумины – простые низкомолекулярные гидрофильные белки. В молекуле альбумина содержится 600 аминокислот. Молекулярная масса 67 кДа. Альбумины, как и большинство других белков плазмы крови, синтезируются в печени. Примерно 40% альбуминов находится в плазме крови, остальное количество - в интерстициальной жидкости и в лимфе.
ФУНКЦИИ АЛЬБУМИНОВ
Определяются их высокой гидрофильностью и высокой концентрацией в плазме крови.
1. Поддержание онкотического давления плазмы крови. Поэтому при уменьшении содержания альбуминов в плазме падает онкотическое давление, и жидкость выходит из кровяного русла в ткани. Развиваются \"голодные\" отеки. Альбумины обеспечивают около 80% онкотического давления плазмы. Именно альбумины легко теряются с мочой при заболеваниях почек. Поэтому они играют большую роль в падении онкотического давления при таких заболеваниях, что приводит к развитию «почечных» отеков.
2. Альбумины – это резерв свободных аминокислот в организме, образующихся в результате протеолитического расщепления этих белков.
3. Транспортная функция. Альбумины транспортируют в крови многие вещества, особенно такие, которые плохо растворимы в воде: свободные жирные кислоты, жирорастворимые витамины, стероиды, некоторые ионы (Ca2+, Mg2+). Для связывания кальция в молекуле альбумина имеются специальные кальцийсвязывающие центры. В комплексе с альбуминами транспортируются многие лекарственные препараты, например, ацетилсалициловая кислота, пенициллин.
ГЛОБУЛИНЫ
В отличие от альбуминов глобулины не растворимы в воде, а растворимы в слабых солевых растворах.
1-ГЛОБУЛИНЫ
В эту фракцию входят разнообразные белки. 1-глобулины имеют высокую гидрофильность и низкую молекулярную массу - поэтому при патологии почек легко теряются с мочой. Однако их потеря не оказывает существенного влияния на онкотическое давление крови, потому что их содержание в плазме крови невелико.
Функции 1-глобулинов
1. Транспортная. Транспортируют липиды, при этом образуют с ними комплексы - липопротеины. Среди белков этой фракции есть специальный белок, предназначенный для транспорта гормона щитовидной железы тироксина - тироксин-связывающий белок.
2. Участие в функционировании системы свертывания крови и системы комплемента - в составе этой фракции находятся также некоторые факторы свертывания крови и компоненты системы комплемента.
3. Регуляторная функция. Некоторые белки фракции 1-глобулинов яляются эндогенными ингибиторами протеолитических ферментов. Наиболее высока в плазме концентрация 1-антитрипсина. Содержание его в плазме от 2 до 4 г/л (очень высокое), молекулярная масса - 58-59 кДа. Главная его функция - угнетение эластазы - фермента, гидролизующего эластин (один из основных белков соединительной ткани). 1-антитрипсин также является ингибитором протеаз: тромбина, плазмина, трипсина, химотрипсина и некоторых ферментов системы свертывания крови. Количество этого белка увеличивается при воспалительных заболеваниях, при процессах клеточного распада, уменьшается при тяжелых заболеваниях печени. Это уменьшение - результат нарушения синтеза 1-антитрипсина, и связано оно с избыточным расщеплением эластина. Существует врожденная недостаточность 1-антитрипсина. Считают, что недостаток этого белка способствует переходу острых заболеваний в хронические.
К фракции 1-глобулинов относят также 1-антихимотрипсин. Он угнетает химотрипсин и некоторые протеиназы форменных элементов крови.
2-ГЛОБУЛИНЫ. Высокомолекулярные белки. Эта фракция содержит регуляторные белки, факторы свертывания крови, компоненты системы компемента, транспортные белки. Сюда относится и церулоплазмин. Этот белок имеет 8 участков связывания меди. Он является переносчиком меди, а также обеспечивает постоянство содержания меди в различных тканях, особенно в печени. При наследственном заболевании - болезни Вильсона - уровень церулоплазмина понижается. Вследствие этого повышается концентрация меди в мозге и печени. Это проявляется развитием неврологической симптоматики, а также циррозом печени.
Гаптоглобины. Содержание этих белков составляет приблизительно 1/4 часть от всех 2-глобулинов. Гаптоглобин образует специфические комплексы с гемоглобином, освобождающимся из эритроцитов при внутрисосудистом гемолизе. Вследствие высокой молекулярной массы этих комплексов они не могут выводиться почками. Это предотвращает потерю железа организмом.
Комплексы гемоглобина с гаптоглобином разрушаются клетками ретикуло-эндотелиальной системы (клетки системы мононуклеарных фагоцитов), после чего глобин расщепляется до аминокислот, гем разрушается до билирубина и экскретируется желчью, а железо остается в организме, и может быть реутилизировано. К этой же фракции относится и 2-макроглобулин. Молекулярная масса этого белка 720 кДа, концентрация в плазме крови 1.5-3 г/л. Он является эндогенным ингибитором протеиназ всех классов, а также связывает гормон инсулин. Время полужизни 2-макроглобулина очень малое - 5 минут. Это универсальный “чистильщик” крови, комплексы “2-макроглобулин-фермент” способны сорбировать на себе иммунные пептиды, например, интерлейкины, факторы роста, фактор некроза опухолей, и выводить их из кровотока.
С1-ингибитор - гликопротеид, является основным регуляторным звеном в классическом пути активации комплемента (КПК), способен угнетать плазмин, калликреин. При недостатке С1-ингибитора развивается ангионевротический отек.
-ГЛОБУЛИНЫ К этой фракции относятся некоторые белки системы свертывания крови и подавляющее большинство компонентов системы активации комплемента (от С2 до С7).
Основу фракции -глобулинов составляют Липопротеины Низкой Плотности (ЛПНП) (Подробнее о липопротеинах: смотрите лекции “Метаболизм липидов»).
C-реактивный белок . Содержится в крови здоровых людей в очень низких концентрациях ,менее 10 мг/л. Его функция неизвестна. Концентрация С-реактивного белка значительно увеличивается при острых воспалительных заболеваниях. Поэтому С-реактивный белок называют белком \"острой фазы\" (к белкам острой фазы относятся также альфа-1-антитрипсин, гаптоглобин).
гамма-ГЛОБУЛИНЫ
В этой фракции содержатся в основном АНТИТЕЛА - белки, синтезируемые в лимфоидной ткани и в клетках РЭС, а также некоторые компоненты системы комплемента.
Функция антител - защита организма от чужеродных агентов (бактерии, вирусы, чужеродные белки), которые называются АНТИГЕНАМИ.
Главные классы антител в крови:
- иммуноглобулины G (IgG)
- иммуноглобулины M (IgM)
- иммуноглобулины A (IgA), к которым относятся IgD и IgE.
Только IgG и IgM способны активировать систему комплемента. С-реактивный белок также способен связывать и активировать С1-компонент комплемента, но эта активация непродуктивна и приводит к накоплению анафилотоксинов. Накопившиеся анафилотоксины вызывают аллергические реакции.
К группе гамма-глобулинов относится также криоглобулины. Это белки, которые способны выпадать в осадок при охлаждении сыворотки. У здоровых людей их в сыворотке нет. Они появляются у больных с ревматическим артритом, миеломной болезнью.
Среди криоглобулинов существует белок фибронектин. Это высокомолекулярный гликопротеин (молекулярная масса 220 кДа). Он присутствует в плазме крови и на поверхности многих клеток (макрофагов, эндотелиальных клеток, тромбоцитов, фибробластов). Функции фибронектина: 1. Обеспечивает взаимодействие клеток друг с другом; 2. Способствует адгезии тромбоцитов; 3. Предотвращает метастазирование опухолей. Плазменный фибронектин является опсонином - усиливает фагоцитоз. Играет важную роль в очищении крови от продуктов распада белков, например, распада коллагена. Вступая в связь с гепарином , участвует в регуляции процессов свертывания крови. В настоящее время этот белок широко изучается и используется для диагностики особенно при состояниях, сопровождающихся угнетением системы макрофагов (сепсис и др.)

97. СИСТЕМА СВЕРТЫВАНИЯ КРОВИ И ФИБРИНОЛИЗА.
Это единая система, которая выполняет следующие функции:
1) Поддержание крови в сосудах в жидком состоянии.
2) Осуществление гемостаза (предотвращение больших кровопотерь).
Гемостаз - сложный ферментативный процесс, в результате которого образуется кровяной сгусток.
Система свертывания крови - это многокомпонентная система, в состав которой входят белки, фосфолипиды, обломки клеточных мембран и ионы кальция.
Компоненты системы свертывания крови принято называть \"факторами\". Факторы бывают тканевыми, плазменными и тромбоцитарными. Тканевые и плазменные факторы обозначаются римскими цифрами, а тромбоцитарные - арабскими. Если фактор является активным, то за цифрой ставится буква \"а\".
Большинство белков системы свертывания крови обладает ферментативной активностью. Все факторы свертывания крови, кроме фXIII, являются сериновыми протеиназами, которые катализируют реакции ограниченного протеолиза.
В ходе реакций свертывания крови все белки-ферменты сначала выступают в роли субстрата, а затем - в роли фермента. Среди белков, участвующих в свертывании крови, есть такие, которые не обладают ферментативной активностью, но специфически ускоряют протекание ферментативной реакции. Они называются параферментами. Это фV (проакцелерин) и фVIII(антигемофильный глобулин А).
Большинство факторов свертывания крови синтезируется в неактивной форме в виде проферментов. Проферменты активируются и их действие направлено на протекание прямой реакции свертывания крови - на превращение фибриногена в фибрин, которой является основой кровяного сгустка.
Есть 2 механизма свертывания крови - внешний и внутренний.
ВНЕШНИЙ механизм запускается с участием внешних (тканевых) факторов, ВНУТРЕННИЙ - при участии факторов, источником которых служит сама кровь, плазма, собственно ферменты и форменные элементы крови. РАЗЛИЧАЮТСЯ ВНЕШНИЙ И ВНУТРЕННИЙ МЕХАНИЗМЫ ТОЛЬКО НАЧАЛЬНЫМИ СТАДИЯМИ ДО АКТИВАЦИИ ПРОТРОМБИНА (фII - протромбин). ПОСЛЕДУЮЩИЕ СТАДИИ ПРОТЕКАЮТ ОДИНАКОВО И В ТОМ, И В ДРУГОМ СЛУЧАЯХ.
НАЧАЛЬНЫЕ СТАДИИ ВНЕШНЕГО МЕХАНИЗМА.
Для пуска внешнего механизма необходим первичный сигнал: повреждение тканей (клеток), оказавшихся в контакте с кровью, или эндотелия сосуда. При этом разрушаются клеточные мембраны и из клеток высвобождается тканевой тромбопластин (фIII ). Он активирует фVII - прконвертин.
Активация фVII, а также все последующие реакции до активации протромбина протекают на матрице, которая состоит из липопротеиновых осколков клеточных мембран. В ходе активации фVII происходит конформационная перестройка его молекулы, в результате формируется активный центр этого белка-фермента.
Активный фVIIa образует комплекс с тканевыми фосфолипидами и ионом кальция. Этот комплекс обладает протеолитической активностью и вызывает активацию фактора X (Прауэра-стюарта).
Активный фактор Xа тоже обладает протеолитической активностью и активирует протромбин.
НАЧАЛЬНЫЕ СТАДИИ ВНУТРЕННЕГО МЕХАНИЗМА.
Начальные стадии внутреннего механизма называются \"контактная фаза\" или “контактная стадия”. Происходит контакт фXII (хагемана) с чужеродной поверхностью (например, игла шприца, лезвие ножа, стекло). В результате происходит конформационная перестройка фXII и он активируется - переходит в фXIIa.
Активация фXII, а также последующие реакции внутреннего механизма, так же, как и при внешнем механизме, протекают на матрице - тромбопластине, который освобождается при разрушении тромбоцитов.
XIIa действует на XI (Розенталя), превращая его в XIa.
XIa действует на фIX (антигемофильный глобулин В) (обязательно в присутствии ионов кальция!), и переводит его в фIXa.
фIXa образует комплекс с тромбоцитарными фосфолипидами, ионами кальция и параферментом - фVIIIa. В составе этого комплекса фIXa обладает протеолитической активностью и переводит фX в фXa.
Следующие стадии, начиная с активации протромбина (фII), протекают одинаково для обоих механизмов свертывания крови.
Протромбин - белок, который синтезируется в печени. Для синтеза протромбина необходим витамин \"К\". Реакция синтеза протромбина катализируется комплексом, состоящим из активного фXa, фосфолипидов, иона кальция и парафермента Va. В ходе этой реакции резко уменьшается сродство данного комплекса к матрице и активный тромбин,или фIIa, освобождается с матрицы и гидролизует пептидные связи между аргинином и глутаминовой кислотой в молекуле своего субстрата - фибриногена, превращая его в фибрин-мономер.
На следующей стадии мономеры фибрина спонтанно агрегируют с образованием регулярной полимерной структуры \"мягкого\" сгустка растворимого фибрин-полимера. При этом происходит захват фибрин-полимером компонентов крови - формируется тромб (сгусток).
Сначала сгусток рыхлый и мягкий, связи между молекулами фибрин-полимера слабые (нековалентные). Но затем под действием активного фXIIIa (фибриназа) (фXIII активируется фактором IIa - тромбином) происходит прочная ковалентная “сшивка” молекул фибрин-полимера. Образуются межмолекулярные связи между карбоксильными группами глутамина и аминогруппами лизина: так растворимый фибрин-полимер переходит в нерастворимый фибрин-полимер.
После образования нитей фибрина происходит их сокращение (ретракция кровяного сгустка), которое происходит с затратой АТФ.
Процесс тромбообразования постоянно контролируется антитромбином III - ингибитором сериновых протеиназ. Кроме того, протекание большинства реакций свертывания крови на матрице обеспечивает:
1) высокую эффективность процесса
2) локальность процесса - процесс свертывания протекает только в месте повреждения (это предотвращает процесс диссеминированного внутрисосудистого свертывания (ДВС-синдром).
Скорость свертывания крови зависит не только от работы системы свертывания, но и от присутствия естественных антикоагулянтов - веществ, предотвращающих свертывание крови.

98.Скорость свертывания крови зависит не только от работы системы свертывания, но и от присутствия естественных антикоагулянтов - веществ, предотвращающих свертывание крови.
АНТИКОАГУЛЯНТЫ.
Естественные антикоагулянты синтезируются в тканях и поступают в кровь, где препятствуют активации факторов свертывания крови. К ним относятся ГЕПАРИН, АНТИТРОМБИН-III и альфа-2-МАКРОГЛОБУЛИН.
ГЕПАРИН предотвращает активацию некоторых факторов, но непосредственно на них не действует. Гепарин способен активировать АНТИТРОМБИН-III. Обладая высоким отрицательным зарядом, гепарин связывается с катионными участками антитромбина- III. В результате изменяется конформация антитромбина- III и он приобретает способность инактивировать сериновые протеиназы.
альфа-2-МАКРОГЛОБУЛИН - эндогенный ингибитор протеаз, в том числе многих ферментов, участвующих в работе системы свертывания крови и фибринолиза (тромбин, плазмин).Работа параферментов контролируется СИСТЕМОЙ ПРОТЕИНА “С”. Протеин “С” - это гликопротеин, который содержит карбоксиглутаминовую кислоту, его синтез зависит от витамина “К”. Существует в крови в виде профермента, активируется тромбином. Активный протеин “С” активирует фV и фVIII, переводя их в фVa и фVIIIa путем ограниченного протеолиза. В плазме крови есть эндогенный ингибитор протеина “С”. Считается, что система свертывания крови работает всегда: одновременно происходит образование и растворение фибриновых сгустков благодаря тому, что работа системы свертния крови уравновешивается работой системы фибринолиза. Фибринолиз - это расщепление фибринполимера на отдельные пептиды, которое катазируется ПЛАЗМИНОМ. Плазмин - сериновая протеиназа, способен гидролизовать фибрин, фибриноген и др. Сам плазмин образуется из плазминогена под действием АКТИВАТОРА ПЛАЗМИНОГЕНА. Тканевой активатор плазминогена неактивен до тех пор, пока не вступит в контакт с фибрином. Контактируя с фибрином, он приобретает способность активировать плазминоген. Когда фибрин будет гидролизован плазмином, активатор плазминогена теряет свою активность.

101. ЭРИТРОЦИТЫ
К Л Е Т К И К Р О В И – эритроциты (в 1мл. 5*109, красные кровяные клетки лишенные ядра, ибосом, митохондрий, лизосом. Образуются в красном костном мозге. Продолжительность жизни 125 дней, разрушаются в селезенки и в печени. Почти целиком заполнены гемаглабином).
Главная функция - транспорт газов: перенос О2 и СО2. Он возможен благодаря большому содержанию гемоглобина и высокой активности фермента карбоангидразы.
Обмен эритроцитов имеет ряд особенностей:
1. В зрелых эритроцитах не идут реакции биосинтеза белков.
2. Образование энергии - только путем гликолиза, субстрат - только глюкоза.
В эритроцитах существуют механизмы предохранения гемоглобина от окисления:
1. Активно протекает ГМФ-путь распада глюкозы, дающий НАДФ.H2
2. Высока концентрация глютатиона - пептида, содержащего SH-группы

102. Главная функция - транспорт газов: перенос О2 и СО2. Он возможен благодаря большому содержанию гемоглобина и высокой активности фермента карбоангидразы.
Зрелые эритроциты не имеют ядер, рибосом, митохондрий, лизосом.
Гемоглобин (Hb) имеет молекулярную массу 80000 Да. Это сложный белок с четвертичной структурой: состоит из нескольких субъединиц. У Hb 4 субъединицы. Каждая субъединица состоит из небелковой части - гема и белка глобина (всего 4 гема и 4 глобина в молекуле гемоглобина).
Гем имеет тетрапиррольную структуру, т.е. состоит из 4-х замещенных пиррольных колец, соединенных между собой с помощью метиновых мостиков. Эта структура называется порфирином (без железа). Протопорфирин, в который включено железо, называется ГЕМ.
Железо в Hb имеет степень окисления “+2” и координационное число 6. Двумя ковалентными связями Fe связано с азотами пиррольных колец. Две координационные связи идут на связь с остатками гистидина в молекулах глобина. Белковая часть Hb состоит из 4-х попарно одинаковых протопорфириновых циклов.
Молекула HbA (Hb взрослого человека) содержит- 2 альфа- и 2 бета-полипептидные цепи. Этот тип гемоглобина составляет приблизительно 95-97% от всего количества гемоглобина в крови.
HbA2 (2 альфа- и 2 дельта-цепи) у взрослого примерно 2%.
HbF (2 альфа и 2 гамма-цепи) - примерно 2% у взрослого. HbF - фетальный гемоглобин. В крови новорожденного такого гемоглобина содержится примерно 80%. В отличие от HbA этот тип гемоглобина имеет гораздо большее сродство к кислороду.
Сейчас установлено 5 видов HbA. Все они имеют 2 альфа- и 2 бета-цепи, но в минорных формах HbA присоединяются остатки простых сахаров (глюкозы) - гликозилированные формы гемоглобина.
У больных сахарным диабетом гликозилированных форм гемоглобина больше, чем у здоровых людей. Если снизить уровень сахара крови, то количество гликозилированнных форм снижается.
В крови человека иногда встречаются аномальные формы гемоглобина, которые отличаются от нормального Hb по аминокислотному составу полипептидных цепей. При этом изменяются изоэлектрическая точка, заряд, форма белковой молекулы. Заболевания, которые связаны с изменением структуры полипептидных цепей называются гемоглобинопатиями.
Серповидноклеточная анемия - характеризуется появлением HbS. В бета-цепи глутаминовая кислота заменена на валин вследствие мутации. Это приводит к изменению свойств Hb. Возрастает гидрофобность молекулы. Молекулы агрегируют. Эритроцит под микроскопом выглядит как серп.
В ряде случаев наблюдается одно из нарушений синтеза нормальных цепей Hb. Если нарушается синтез бета-цепей - то заболевание называется: бета-талассемия. Если нарушен синтез альфа-цепи, то альфа-талассемия.

103. СИСТЕМА РЕГУЛЯЦИИ СОСУДИСТОГО ТОНУСА
В нашем организме есть две взаимосвязанные системы протеолитических ферментов, в результате работы которых регулируется сосудистый тонус.
1. РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВАЯ СИСТЕМА (РААС-система).
Работа этой системы направлена на повышение артериального давления.
2. КИНИНОВАЯ СИСТЕМА. Направлена на понижение артериального давления.
Активация обеих систем сводится к синтезу биологически активных низкомолекулярных пептидов из их предшественников путем реакций ограниченного протеолиза.
Главная роль принадлежит РААС, которая регулирует сосудистый тонус и водно-солевой обмен.
В почках в клетках юкстагломерулярного аппарата (ЮГА) синтезируется РЕНИН - протеолитический фермент. Ренин участвует в регуляции сосудистого тонуса, превращая ангиотензиноген в декапептид ангиотензин-I путем ограниченного протеолиза. Из ангиотензина-I под действием фермента карбоксикатепсина образуется (тоже путем ограниченного протеолиза) октапептид ангиотензин-II. Он обладает сосудосуживающим эффектом, а также стимулирует выработку гормона коры надпочечников - альдостерона. Альдостерон усиливает реабсорбцию натрия и воды в почечных канальцах - это приводит к увеличению объема крови, циркулирующей в сосудах. В результате повышается артериальное давление. Когда молекула ангиотензина-II выполнит свою функцию, она подвергается тотальному протеолизу под действием группы специальных протеиназ - ангиотензиназ. Так работает РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВАЯ СИСТЕМА.
Выработка ренина зависит от кровоснабжения почек. Поэтому при снижении артериального давления выработка ренина увеличивается, а при повышении - снижается. При патологии почек иногда наблюдается повышенная выработка ренина и может развиваться стойкая гипертензия (повышение артериального давления).
Ренин-ангиотензин-альдостероновая система работает в тесном контакте с другой системой регуляции сосудистого тонуса: КАЛЛИКРЕИН-КИНИНОВОЙ СИСТЕМОЙ, действие которой приводит к понижению артериального давления.
В почках синтезируется белок кининоген. Попадая в кровь, кининоген под действием сериновых протеиназ - калликреинов превращается в вазоактивные пептиды - кинины: брадикинин и каллидин. Брадикинин и каллидин обладают сосудорасширяющим эффектом - понижают артериальное давление. Инактивация кининов происходит при участии карбоксикатепсина - этот фермент одновременно влияет на обе системы регуляции сосудистого тонуса, что приводит к повышению атериального давления. Ингибиторы карбоксикатепсина применяются в лечебных целях при лечении некоторых форм артериальной гипертензии.

106. сердечная мышца по ряду хим-х соединений занимает промежуточное положение м-у скелетной мускулатурой и гладкими мышцами. В сердечной мышце значительно меньше миофибриллярных белков, чем в скелетной. Концентрация белков стромы в сердечной мышце выше, чем в скелетной. Известно так же, что миозин, тропомиозин и тропонин с.м. заметно отличаются по своим физико-химическим св-вам от соответствующих белков скелетной мускулатуры. Также отличается и фракционный с-в саркоплазматических белков. Саркоплазма миокарда содержит больше миоальбумина.
Содержание АТФ в миокарде ниже чем в скелетной, но выше чем в гладкой. По содержанию гликогена миокард также занимает промежуточное положение. Миокард по сравнению с другими мышечными тканями богаче фосфолипидами, при окислении которых вырабатывается значительная часть энергии, необходимая для его сокращения.

107,108.ВОЛОКНА СОЕДИНИТЕЛЬНОЙ ТКАНИ
В межклеточном матриксе находятся 2 типа волокнистых структур: КОЛЛАГЕНОВЫЕ и ЭЛАСТИНОВЫЕ ВОЛОКНА. Основным их компонентом является нерастворимый белок
КОЛЛАГЕН - сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30% от общего количества белка в организме человека. Его фибриллярная структура - это суперспираль, состоящая из 3-х альфа-цепей. Нерастворим в воде, солевых растворах, в слабых растворах кислот и щелочей. Это связано с особенностями первичной структуры коллагена. В коллагене 70% аминокислот являются гидрофобными. Аминокислоты по длине полипептидной цепи расположены группами (триадами), сходными друг с другом по строению, состоящими из трех аминокислот. Каждая третья аминокислота в первичной структуре коллагена - это глицин (триада (или группа): (гли-X-Y)n, где X - любая аминокислота или оксипролин, Y - любая аминокислота или оксипролин или оксилизин). Эти аминокислотные группы в полипептидной цепи многократно повторяются. Необычна и вторичная структура коллагена: шаг одного витка спирали составляют только 3 аминокислоты (даже немного меньше, чем 3), а не 3.6 аминокислоты на 1 виток, как это наблюдается у других белков. Такая плотная упаковка спирали объясняется присутствием глицина. Эта особенность определяет высшие структуры коллагена. Молекула коллагена построена из 3-х цепей и представляет собой тройную спираль. Эта тройная спираль состоит из 2-х альфа-1-цепей и одной альфа-2-цепи. В каждой цепи 1.000 аминокислотных остатков. Цепи параллельны и имеют необычную укладку в пространстве: снаружи расположены все радикалы гидрофобных аминокислот. Известно несколько типов коллагена, различающихся генетически.
СИНТЕЗ КОЛЛАГЕНА
Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.
1-Й ЭТАП Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген.
2-Й ЭТАП С помощью сигнального пептида “пре” транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется “пре” - образуется “проколлаген”.
3- Й ЭТАП Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ) (смотрите рисунок).
При недостатке витамина “С” - аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.
4-Й ЭТАП Посттрасляционная модификация - гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.
5-Й ЭТАП Заключительный внутриклеточный этап - идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.
6-Й ЭТАП Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.
7-Й ЭТАП Ковалентное “сшивание” молекулы тропоколлагена по принципу “конец-в-конец” с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь.
Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном.
Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).
8-Й ЭТАП Ассоциация молекул нерастворимого коллагена по принципу “бок-в-бок”. Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.
ЭЛАСТИЧЕСКИЕ ВОЛОКНА
2-й вид волокон - эластические. В основе строения - белок ЭЛАСТИН. Эластин еще более гидрофобен, чем коллаген. В нем до 90% гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул. Глобула из одной полипептидной цепи называется альфа-эластин. За счет остатков лизина происходит взаимодействие между молекулами альфа-эластина.
В образовании этой структуры принимают участие радикалы аминокислоты лизина. Это структура ДЕСМОЗИНА. ДЕСМОЗИН - это структура пиридина, которая образуется при взаимодействии лизина 4-х молекул альфа-эластина.
КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ СОЕДИНИТЕЛЬНОЙ ТКАНИ.
Это ФИБРОБЛАСТЫ, ТУЧНЫЕ КЛЕТКИ и МАКРОФАГИ. В них происходят процессы синтеза структурных компонентов, а также процесс распада соединительной ткани. Коллаген обновляется на 50% за 10 лет. В фибробластах идут синтетические процессы: синтез коллагена, эластина.

109. Костная ткань - это особый вид соединительной ткани. Костная ткань имеет особенности строения, которые не встречаются в других видах соединительной ткани. В ней преобладает межклеточное вещество, содержащее большое количество минеральных компонентов, главным образом - солей кальция. Основные особенности кости - твердость, упругость, механическая прочность.
В компактном веществе кости большая часть минеральных веществ представлена гидроксилапатитом (смотрите рисунок) и аморфным фосфатом кальция. Кроме них встречаются карбонаты, фториды, гидроксиды и значительное количество цитрата. Химический состав костной ткани (в%%): 20% - органический компонент, 70% - минеральные вещества, 10% - вода. Губчатое вещество: 35-40% - минеральных веществ, до 50% - органические соединения, содержание воды - 10%.
Особенность минерального компонента в том, что фактическое соотношение кальций/фосфор равно 1,5, хотя расчетное соотношение должно быть 1,67. Это позволяет кости легко связывать или отдавать ионы фосфата, поэтому кость - это депо для минералов, особенно для кальция.
С О Е Д И Н И Т Е Л Ь Н А Я Т К А Н Ь
ОСОБЕННОСТИ ХИМИЧЕСКОГО СТРОЕНИЯ СОЕДИНИТЕЛЬНОЙ ТКАНИ
Соединительная ткань составляет до 50% массы человеческого организма. Это связующее звено между всеми тканями организма. Различают 3 вида соединительной ткани:
- собственно соединительная ткань;
- хрящевая соединительная ткань;
- костная соединительная ткань
Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани.
ФУНКЦИИ СОЕДИНИТЕЛЬНОЙ ТКАНИ
1. Структурная 2. Обеспечение постоянства тканевой проницаемости 3. Обеспечение водно-солевого равновесия 4. Участие в иммунной защите организма
СОСТАВ И СТРОЕНИЕ СОЕДИНИТЕЛЬНОЙ ТКАНИ
В соединительной ткани различают: МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО, КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ, ВОЛОКНИСТЫЕ СТРУКТУРЫ (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.
МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО
Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями, составляющими до 30% массы межклеточного вещества. Оставшиеся 70% - это вода. Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами -
Длинные полисахаридные цепи складываются в глобулы. Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно большой объем. ГАГ являются гидрофильными соединениями, содержат много гидроксильных групп, имеют значительный отрицательный заряд (много карбоксильных и сульфогрупп). Значительный отрицательный заряд способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать воду, а также способствует диссоциации молекул этих веществ в соединительной ткани.
111. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ОБМЕН КАЛЬЦИЯ И ФОСФОРА
На обменкальция и фосфора влияют гормоны ПАРАТГОРМОН, СЕРОТОНИН и активная форма витамина D3.
Особое место среди нарушений обмена кальция и фосфора занимают остеопороз, некоторые формы рахита, некоторые заболевания почек.
За сутки из кишечника всасывается примерно 1 грамм кальция и только 1/3 от этого количества усваивается тканями организма. Столько же - 1грамм кальция - ежесуточно теряется с мочой и калом. В межклеточных жидкостях содержится тоже в среднем 1 грамм кальция. Значит, за одни сутки полностью обновляется весь внеклеточный кальций организма. У взрослого здорового человека в возрасте до 40 лет все процессы минерализации и резорбции костной ткани находятся в равновесии. У детей до окончательного окостенения наблюдается положительный кальциевый баланс. После 40-летнего возраста - отрицательный баланс кальция.
Паратгормон влияет на процессы созревания активного витамина D3 в почках. Активный витамин D3 (1,25-диоксивитамин D3) увеличивает всасывание кальция в кишечнике и повышает усвоение кальция костной тканью, усиливает действие паратгормона в костной ткани и почках.
РЕГУЛЯЦИЯ СИНТЕЗА И СЕКРЕЦИИ ПАРАТГОРМОНА И КАЛЬЦИТОНИНА.
Главным регулятором синтеза и секреции этих гормонов является внеклеточный кальций. Если уменьшается его концентрация во внеклеточной жидкости, это приводит к увеличению секреции кальцитонина и уменьшению секреции паратгормона и наоборот. На выработку паратгормона также влияют катехоламины, которые усиливают его секрецию.
КОРТИКОСТЕРОИДЫ (кортизол) тормозят всасывание кальция в кишечнике, увеличивают синтез и секрецию паратгормона.
Повышение содержания фосфатов в крови, приводя к одновременному снижению уровня кальция, также усиливает секрецию паратгормона.
Суммарной эффект паратгормона - резорбция костной ткани. Разрушению подвергается не только минеральный компонент, но и компоненты органического матрикса. Это подтверждается повышенным содержанием оксипролина (показатель ускорения разрушения коллагеновых белков) в моче при гиперсекреции паращитовидной железы. Значит, паратгормон в физиологических условиях способствует обновлению костной ткани, то есть происходит стимуляция остеокластов и одновременно усиливается пролиферация остеобластов. При действии паратгормона в костной ткани происходит закисление (снижение pH среды), так как в межклеточное пространство выделяются лактат и цитрат и повышается активность различных гидролитических ферментов, в том числе и лизосомальных протеиназ.
Кроме повышения концентрации кальция и понижения концентрации фосфатов в крови при гиперпаратиреозе может развиваться образование камней в почках - нефрокальциноз. Причина этого - постоянно повышенная концентрация кальция в крови и моче.
Вторичный гиперпаратиреоз при заболеваниях почек возникает при нарушении созревания активной формы витамина D3. Результат: снижение концентрации кальция в крови, что приводит к увеличению выработки паратгормона.
Гипопаратиреоз. Снижение уровня паратгормона в крови (может возникнуть при повреждении или удалении паращитовидных желез) приводит к снижению концентрации кальция и повышению концентрации фосфора в крови. В результате могут развиваться судороги, паралич дыхательной мускулатуры, ларингоспазм, что приводит к смерти больного.
КАЛЬЦИТОНИН
Пептидный гормон, состоит из 30 аминокислот. Клетки-мишени для этого гормона находится в костной ткани. Гормон обладает мембранным механизмом действия (действует через аденилатциклазную систему). Под действием кальцитонина происходит усиление перехода фосфатов в периостальную жидкость, в результате разрушения фосфорных эфиров различных органических соединений в клетках костной ткани. Выход фосфатов в межклеточное вещество способствует задержке кальция в костной ткани.
Таким образом, кальцитонин ингибирует процессы резорбции кости.

112. Важнейшее значение печени в обмене в-в определяется тем, что она явл-ся большой промежуточной станцией м-у портальным и общим кругом кровообращения. Большая часть всасывающихся из кишечника в-в проходит ч-з печень. Печень функционирует как первичный регулятор содержания в крови в-в поступающих в организм с пищей. Важнейшая ф-я печени это поддержание гомеостаза. Печень т.ж. выполняет экскреторную ф-ю связанную с ее детоксикациоонной ф-й.
Чужеродные в-ва в печени превращаются в менее токсичные или индеферентные. Происходит это путем окисления, восстановления, метилирования, ацетилирования, и конъюгации с теми или иными в-вами. Окисление, восстановление и гидролиз чужеродных соединений в основном осуществляют микросомальные ф-ы. в печени широко представлены «защитные синтезы», например, мочевины, она безвреживает аммиак. В результате гниения в кишечнике образуются фенол, крезол,скатол, индол, которые всасываются и с током крови поступают в печень , где они вступают в парные соединения с серной и глюкуроновой к-ми и обезвреживаются.
Нитробензол в печени обезвреживается путем восстановления до парааминофенола. Ароматические углеводы обеззараживаются путем окисления. Печень т.ж. участвует в инактивировании многих гормонов.

113.Гемоглобин (Hb)
имеет молекулярную массу 80000 Да. Это сложный белок с четвертичной структурой: состоит из нескольких субъединиц. У Hb 4 субъединицы. Каждая субъединица состоит из небелковой части - гема и белка глобина (всего 4 гема и 4 глобина в молекуле гемоглобина).
Гем имеет тетрапиррольную структуру, т.е. состоит из 4-х замещенных пиррольных колец, соединенных между собой с помощью метиновых мостиков. Эта структура называется порфирином (без железа). Протопорфирин, в который включено железо, называется ГЕМ.
Железо в Hb имеет степень окисления “+2” и координационное число 6. Двумя ковалентными связями Fe связано с азотами пиррольных колец. Две координационные связи идут на связь с остатками гистидина в молекулах глобина. Белковая часть Hb состоит из 4-х попарно одинаковых протопорфириновых циклов.
РАСПАД ГЕМОГЛОБИНА
Происходит в мононуклеарных фагоцитах (в селезенке и печени). Сначала происходит разрыв связи между I-м и II-м кольцами. Фермент - НАДзависимая оксигеназа. После ее действия образуется пигмент зеленого цвета - вердоглобин. В его составе сохраняется и железо и белок. В дальнейшем вердоглобин распадается на составные части: белок, железо и пигмент-биливердин. Железо образует комплекс с белком трансферрином, и этот комплекс поступает в ткани, где оно снова может быть использовано для синтезов или депонироваться в виде комплекса с белком ферритином.
114, 116.ГЕМОЛИТИЧЕСКАЯ ЖЕЛТУХА Наблюдается при усилении распада эритроцитов. Билирубина образуется больше, чем в норме и скорость экскреции тоже увеличивается. Непрямой билирубин повышается в крови. В моче билирубина нет, а содержание стеркобилина в кале и в моче повышено.

115.ПЕЧЕНОЧНОКЛЕТОЧНАЯ ЖЕЛТУХА (паренхиматозная). Наблюдается при повреждении гепатоцитов (например, при вирусном гепатите). Билирубин не обезвреживается. Желчные пигменты поступают не только в кишечник, но и в кровь. Т.е. в крови повышается содержание не только прямого, но и непрямого билирубина. Наблюдается билирубинурия. В моче обнаруживают мезобилиноген.

117.ОБТУРАЦИОННАЯ ЖЕЛТУХА (механическая) Наблюдается при закупорке желчных протоков (например, при желчнокаменной болезни). Желчь продолжает вырабатываться, но поступает не только в желчные протоки, а также в кровь. В крови повышается уровень билирубина, в основном - прямого билирубина. Наблюдается билирубинурия. Содержание стеркобилина в моче и в кале снижено (кал становится светлым, а моча темнеет за счет прямого билирубина).

118. Роль печени в углеводном обмене заключается прежде всего в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией соотношения м-у синтезом и распадом гликогена, депо которого является печень. Синтез гликогена в печени и его регуляция в основном аналогичны тем процессам, которые протекают в других органах и тканях. Синтез гликогена из глюкозы обеспечивает в норме временный резерв углеводов, необходимый для постоянства концентрации глюкозы в крови, в тех случаях, когда ее содержание значительно уменьшается.
Говоря об утилизации глюкозы печенью, необходимо подчеркнуть важную роль ф-та глюкокиназы в этом процессе. Она катализирует фосфорилирование глюкозы с образованием глюкозо-6-фосфата. При этом активность глюкокиназы в печени почти в 10 раз превышает активность гексокиназы. Важное различие м-у этими двумя ф-ми, заключается в том, что глюкокиназа в противоположность гексокиназе имеет большое значение Кт для глюкозы и не ингибируется глюкозо-6-фосфатом.
После приема пищи уровень глюкозы в воротной вене сильно возрастает; в тех же пределах увеличивается и внутрипеченочная концентрация сахара. Повышение уровня гл-ы в печени вызывает существенное увеличение активности глюкокиназы и автоматически увеличивает уровень поглощения глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена, или ращепляется).
В печени происходит как утилизация, так и синтез глюкозы из гликогена, распад которого происходит фосфоролитическим путем.
ГЛИКОНЕОГЕНЕЗ - это образование углеводов (например, глюкозы или гликогена из веществ, имеющих неуглеводное происхождение.
Некоторые промежуточные метаболиты ГБФ-пути могут образоваться из веществ других классов (не из углеводов): например, из аминокислот, липидов.
Далее из пирувата синтезируется глюкоза (в печени) или гликоген (в печени и в мышцах). Для обходных реакций необратимых стадий 1-го этапа ГБФ-пути существуют специальные ферменты: для 1-й - глюкозо-6-фосфатаза (только в печени!), для 3-й - фруктозо-1,6-бисфосфатаза, и для 10-й реакции - пируваткарбоксилаза. Ключевым ферментом глюконеогенеза из пирувата является пируваткарбоксилаза. В состав его кофермента входит витамин H - биотин.Этот фермент обычно малоактивен, но он сильно активируется даже при небольшом накоплении АцКоА в цитоплазме. Тогда обходной обратный путь 10-й стадии и весь процесс синтеза углеводов из ПВК может протекать быстрее, чем их распад.

119. Ферментативные системы печени способны катализировать подавляющее большинство р-й метаболизма липидов. Совокупность таких реакций лежит в основе таких процессов, как синтез ВЖК, триглицеридов, фосфолипидов, холистерина и его эфиров, а т.ж. липолиз триглециридов, окисление ж.к., образование кетоновых тел.
Ко-А-производные ж.к. с длинной цепью взаимодействуют с глицерол-3-фосфатом с образованием фосфатидной к-ты, котрая за тем гидролизуется до диглицерида. Путем присоединения к образовавшемуся диглицериду еще одной молекулы Ко-А-производного ж.к. образуется триглицерид. Синтезированные в печени триглицериды либо остаются в печени, либо секретируются в кровь в форме липопротеидов. Секреция происходит с задержкой, которая соответствует времени, необходимому для образования липопротеидов. При высоком содержании ж.к. в плазме их поглощение печенью возрастает, усиливается синтез триглицеридов и окисление ж.к., что может привести к повышенному образованию кетоновых тел.
Роль печени в обмене холестерина. Часть холестерина поступает в организм с пищей, но основная часть синтезируется в печени из ацетил-КоА. Биосинтез холестерина в печени подавляется экзогенным холестерином, т.е. получаемым с пищей. Биосинтез холестерина регулируется по принципу обратной связи. Часть синтезированного в печени холестерина выделяется из организма совместно с желчью, другая часть превращается в желчные к-ты. Часть его используется в других органах для синтеза стероидов. В печени холестерин может взаимодействовать с ж.к. с образованием эфиров.
Синтезированные в печени эфиры поступают в кровь, в которой т.ж. содержится определенное кол-во холестерина. При паринкиматозных поражениях печени активность ее клеток снижается, в результате чего снижается и содержание холестерина и его эфиров в плазме.

120. Печень играет центральную роль в обмене белков. Она выполняет следующие ф-и: синтез специфических белков плазмы; образование мочевины и мочевой к-ты; синтез холина и креатина; переаминирование и дезаминирование а.к., что очень важно для взаимных превращений а.к. и гликонеогенеза и образования кетоновых тел. Все альбумины плазмы синтезируются гепатоцитами, только у-глобулины продуцируются ретикулоэндотелиальной сис-ой к которой относятся купферовские клетки печени (звездчатые). В печени синтезируется протромбин, фибриноген, проконвертин, проакцелерин.
При поражении печени нарушается пр-сс дезаминирования а.к., что приводит к увеличению их концентрации в крови и моче и это приводит к аминоацидурии.

121. Главной функцией дыхательной системы является осуществление газообмена, а неизбежный контакт дыхательной системы с патогенами обуславливает потребность в защитных механизмах. Именно эти 2 фактора определяют ее биохимию. Анатомически, гистологически и биохимически в дыхательной системе выделяют дыхательные пути (обеспечивают проведение, согревание, увлажнение и очистку вдыхаемого воздуха) и респираторный отдел легких (осуществляет газообмен).
Дыхательные пути
Внутренняя поверхность дыхательных путей покрыта тонким слоем слизи. Слизь имеет в своем составе растворенные в воде ионы Na+, Cl–, K+, Ca2+, муцины, сульфатированные протеогликаны, сурфактант, лизоцим, лактоферрин и секреторный IgA. Разные компоненты слизи синтезируются в разных отделах дыхательных путей и даже в респираторном отделе легких (вода, ионы, сурфактант), источником муцинов являются подслизистые железы.
1. Клиренс ингалируемых частиц
На клиренс ингалируемых частиц влияют: 1) реология слизи; 2) адгезивность слизи; и 3) биение рестичек реснитчатого эпителия.
1. Реология слизи
Реологические свойства (текучесть) слизи определяются соотношением между сульфатированных протеогликанов и концентрацией ионов Ca2+. Увеличение [Ca2+] в слизи нарушает текучесть слизи. Синтез сульфатируемых протеогликанов регулируется витамином A, поэтому дефицит этого витамина приводит к нарушению клиренса слизи, размножению бактерий и воспалению.
2. Адгезивность слизи
Адгезивность слизи прямо пропорциональна содержанию Cl– и сурфактанта.
Поверхностный эпителий тонко регулирует реологические и адгезивные свойство слизи благодаря избирательной реабсорбции ионов, секрецией сурфактанта и паракринной регуляции подслизистых желез.
3. Биение ресничек
Слизь постоянно перемешивается благодаря биению ресничек реснитчатого эпителия.
Дыхательные пути следует рассматривать как реабсорбирующий участок (с максимумом реабсорбции в носоглотке), а респираторный отдел легких—как секретирующий. Поэтому направленный ток жидкости из нижних отделов в верхние обусловлен исключительно распределением секретирующих и реабсорбирующих элементов.
2. Подслизистые железы (3)
Подслизистые железы обнаруживаются в дыхательных путях содержащих хрящ. Они содержат клетки 4 типов: сероциты, мукоциты, поверхностные эпителиоциты и камбиальные клетки.
1. Серозные клетки
Фундальная часть железы представлена серозными клетками секретирующими ионы Cl– и Na+, воду, лизоцим, лактоферрин и секреторный IgA. Фаза секреция начинается с открытия Cl–-канала дефектного при муковисцидозе (CFTR). Поступающий в просвет железы ионы Cl– обеспечивают трансэпителиальную разность потенциалов для парацеллюлярного транспорта ионов Na+. Вода поступает в просвет железы трансцеллюлярно.
Серозные клетки синтезируют и секретируют сульфатированные протеогликаны. Степень сульфатирования регулирется витамином A и CFTR.
Серозные клетки секретируют фермент лизоцим, расщепляющий клеточную стенку бактерий, и гликопротеин лактоферрин, связывающий ионы железа. Ионы железа появляются в слизи при разрушении эпителиоцитов и бактерий, а поскольку свободное железо цитотоксично, то лактоферрин необходим для его нейтрализации.
2. Мукоциты
Мукоциты синтезируют муциты конденсированные с ионами Ca2+. Секреция муцинов регулируется CFTR.
Таким образом, Cl-канал CFTR сочетает в себе свойства анионного канала и внутриклеточного регулятора. CFTR активируется в ответ на внутриклеточный синтез цАМФ и повышение [Ca2+]i.
3. Поверхностные эпителиоциты
Фенотипически сходны с альвеоцитами II типа. Поверхностные эпителиоциты экспрессируют ENaC, 3Na+/2K+-АТФазу и ферменты синтеза сурфактанта. Поверхностный эпителий регулирует ионный состав слизи, паракринно регулирует секрецию подслизистыми железами и выполняет иммуномодулирующую функцию.
4. Неспецифические элементы противовирусной защиты (4)
Помимо бактерий, против которых направлены выше перечисленные факторы защиты, дыхательная система вообще и эпителий дыхательных путей в частности из-за своего стратегического положения постоянно контактирует с вирусами. Поэтому эволюцией выработались универсальные механизмы противовирусной защиты, к которым относятся система цитокинов RANTES и интерферона-.
1. RANTES
RANTES (дословный перевод с англ.—цитокин синтезируемый номальными T-лимфоцитами) секретируется многими эпителиоцитами (в том числе и поверхностным эпителием бронхов) при инфицировании вирусом. В норме эпителиоцит постоянно синтезирует РНКаза-чувствительную мРНК RANTES, поэтому синтеза белка RANTES не происходит. При инфицировании эпителиоцита вирусные белки блокируют РНКазы и мРНК RANTES транслируется в секретируемый белок RANTES, привлекающий Т-лимфоциты. Таким образом, регулируемый на посттранскрипционном уровне белок RANTES сообщает иммунной системе о внедрении вируса еще до начала его репликации. Синтез и секрецию RANTES блокируют глюкокортикоиды.
2. Интерферон- (IFN)
Гликопротеин IFN секретируется многими иммуноцитами, а также эпителием бронхов, инфицированным вирусом. Синтез IFN регулируется на уровне транскрипции, а его секреция начинается одновременно с началом репликации вируса. IFN индуцирует синтез и экспрессию на клеточной мембране соседних неинфицированных эпителиоцитов молекул клеточной адгезии (ICAM-1), синтез iNOS, а также множества интерлейкинов (IL-1, IL-10 и др.) и белков теплового шока. Эта реакция обеспечивает защиту неифицированных эпителиоцитов и привлечение Т-лимфоцитов.
Некоторые штаммы парамиксовирусов для обхождения системы IFN синтезируют белки сходные с IFN. Такой вирусный белок (при соответствующей генетической предрасположенности у человека) чрезмерно активирует сигнальный каскад IFN, вызывая дисадаптацию эпителиоцитов и неправильную дифференцировку стволовых эпителиальных клеток с формированием провоспалительного фенотипа, при котором доля реабсорбирующих/иммуномодулирующих поверхностных эпителиоцитов снижается, а доля секретирующих/провоспалительных слизистных и серозных клеток—возрастает. Такое перепрограммирование фенотипа эпителия способно вызвать гиперреактивность бронхов и бронхиальную астму.

122. Газообмен
Газообмен происходит в альвеолах легких и представляет собой диффузию CO2 из эритроцитов в альвеолы и O2 из альвеол в кровь. Скорость диффузии газов определяется их парциальным давлением (pCO2 и pO2).
Основной транспортной формой углекислого газа в крови является карбанион (HCO3–), образуемый при спонтанной диссоциации угольной кислоты: H2CO3H++HCO3–.
Поэтому для осуществления газообмена эссенциальна эритроцитарная карбоангидраза, катализирующая обратимую реакцию: H2CO3 CO2 + H2O.
Направление реакции зависит от pCO2. Поэтому в периферических тканях, где высоко pCO2, реакция направлена в сторону синтеза H2CO3, а в легких из-за удаления CO2 при выдохе реакция направлена на образование CO2 и H2O.
Диффузия CO2 через мембраны альвеоцитов, эндотелиоцитов и эритроцитов осуществляется водные каналы—аквапорины (AQP1), поэтому для осуществления газообмена необходим постоянный ток жидкости через эти клетки (1). Наличие каналов для CO2 объясняет огромную проницаемость альвеоцитов для этого газа (она в 25 раз выше, чем для O2). Кроме того, CO2 (и O2) также диффундируют через фосфолипидные мембраны клеток.
В альвеолах различают альвеоциты I и II типов, а также альвеолярные макрофаги. Общей биохимической особенностью альвеоцитов и альвеолярных макрофагов является высокая экспрессия антиоксидантных ферментов—СОД, каталазы и глутатионпероксидазы.
1. Альвеоциты I типа
Альвеоциты I типа имеют уплощенную форму и покрывают 95% площади альвеол. Альвеоциты I типа осуществляют газообмен, нетребующий затрат энергии, поэтому источником АТФ для этих клеток является анаэробный гликолиз. Альвеоциты I типа экспрессируют AQP1, облегчающий диффузию CO2. Плотные межклеточные соединения между альвеоцитами I типа регулируют перенос ионов Na+ и Cl–. Вслед за ионами трансцеллюлярно диффундирует вода.
4. Альвеолярный клиренс
Исходя из вышеописанных свойств клеток альвеол движение ионов и воды (альвеолярный клиренс) можно представить следующим образом: 1) альвеолы состоят из секретирующих (альвеоциты I типа) и реабсорбирующих клеток (альвеоциты II типа); 2) секретируемая жидкость направляется от альвеоцитов I типа к альвеоцитам II типа, поэтому ингалируемые частицы пыли и бактерии попадая на этот поток жидкости перемещаются в направлении альвеоцитов II типа (альвеолярный \"сток\"), где 3) нейтрализуются и фагоцитируются макрофагами. Избыток жидкости поступает в бронхиолы.
3. Альвеолярные макрофаги
Альвеолярные макрофаги способны к свободному перемещению по альвеолам, но в основном концентрируются возле альвеоцитов II типа. Альвеолярные макрофаги экспрессируют индуцибельную NO-синтазу (iNOS). Синтез iNOS активируют IL-1, IL-10, клеточная стенка бактерий и их ДНК. iNOS продуцирует цитотоксичный NO, нейтрализующий бактерии, вирусы и опухолевые клетки.

123. II. Газообмен
Газообмен происходит в альвеолах легких и представляет собой диффузию CO2 из эритроцитов в альвеолы и O2 из альвеол в кровь. Скорость диффузии газов определяется их парциальным давлением (pCO2 и pO2).
Основной транспортной формой углекислого газа в крови является карбанион (HCO3–), образуемый при спонтанной диссоциации угольной кислоты: H2CO3H++HCO3–.
Поэтому для осуществления газообмена эссенциальна эритроцитарная карбоангидраза, катализирующая обратимую реакцию: H2CO3 CO2 + H2O.
Направление реакции зависит от pCO2. Поэтому в периферических тканях, где высоко pCO2, реакция направлена в сторону синтеза H2CO3, а в легких из-за удаления CO2 при выдохе реакция направлена на образование CO2 и H2O.
Диффузия CO2 через мембраны альвеоцитов, эндотелиоцитов и эритроцитов осуществляется водные каналы—аквапорины (AQP1), поэтому для осуществления газообмена необходим постоянный ток жидкости через эти клетки (1). Наличие каналов для CO2 объясняет огромную проницаемость альвеоцитов для этого газа (она в 25 раз выше, чем для O2). Кроме того, CO2 (и O2) также диффундируют через фосфолипидные мембраны клеток.
III. Альвеолы (2)
В альвеолах различают альвеоциты I и II типов, а также альвеолярные макрофаги. Общей биохимической особенностью альвеоцитов и альвеолярных макрофагов является высокая экспрессия антиоксидантных ферментов—СОД, каталазы и глутатионпероксидазы.
Альвеоциты II типа
Главной функцией альвеоцитов II типа является реабсорбция ионов Na+. Эта работа требует больших затрат энергии, поэтому эти клетки получают энергию в процессе аэробного гликолиза. Вслед на ионами Na+ парацеллюлярно транспортируются ионы Cl–, а трансцеллюлярно—вода. Альвеоциты II типа имеют кубическую форму и апикальную щеточную каемку. В щеточной каемке экспрессируется эпителиальный Na+-канал (ENaC), а в базолатеральной мембране—3Na+/2K+-АТФаза. Кроме того, альвеоциты II типа синтезируют и секретируют сурфактант.
1. ENaC
ENaC—Na+-канал состоит из субъединиц ,  и . Субъединицы  и  синтезируются конститутивно, а синтез -субъединицы регулируется на уровне транскрипции. ENaC обеспечивает пассивное проведение ионов Na+ в альвеоцит по градиенту концентрации.
2. 3Na+/2K+-АТФаза
3Na+/2K+-АТФаза осуществляет энергозависимый удаление Na+ через базолатеральную мембрану против градиента концентрации из цитоплазмы в интерстиций. 3Na+/2K+-АТФаза состоит из  и  субъединиц. -Субъединица конститутивна, а -субъединица—регулируется на уровне транскрипции.
Скорость транспорта ионов через альвеоциты II типа определяется количеством ENaC и активностью 3Na+/2K+-АТФазы. Регуляция осуществляется на транскрипционном и посттранскрипционном уровне. Основными регуляторами транспорта ионов являются: адреналин, кортизол, альдостерон, гипоксия в лице O2– и предсердный (атриальный) натрийуретический пептид (ANP).
3. Адреналин
Адреналин через -адренорецепторы (с цАМФ в качестве второго посредника) обеспечивает быструю интернализацию ENaC в апикальную мембрану и 3Na+/2K+-АТФазы в базолатеральную мембрану, тем самым быстро увеличивая реабсорбцию Na+. Этот феномен может быть важным компонентом патогенеза отека легких.
4. Кортизол и альдостерон
Кортизол через рецепторы глюкокортикоидов и альдостерон через рецепторы минералокортикоидов регулируют скорость транскрипции мРНК -субъединицы ENaC и -субъединицы 3Na+/2K+-АТФазы.
5. ANP
ANP синтезируется и секретируется при расряжении кардиомиоцитов левого предсердия (перегрузка сердца объемом или давлением). Через свой рецептор ANP увеличивает производство цГМФ и ингибирует интернализацию ENaC и 3Na+/2K+-АТФазы. Поэтому ANP может быть важным фактором патогенеза отека легких и \"застойной превмонии\" при болезнях сердца и сосудов.
6. Супероксид и гипоксия
Поскольку альвеоциты II типа содержат митохондрии, то в ответ на гипоксию в клетках продуцируется O2–, который через активацию фактора транскрипции NFB ингибирует транскрипцию мРНК -субъединицы ENaC и -субъединицы 3Na+/2K+-АТФазы. Таким образом, O2 является функциональным антагонистом кортизола и альдостерона.
7. Сурфактант
Альвеоциты II типа синтезируют и секретируют поверхностно-активный фосфолипид сурфактант. Молекулы сурфактанта содержат неполярную \"головку\" и полярные \"хвосты\". \"Головки\" молекулы сурфактанта направлены в сторону клеток, а \"хвосты\"—в просвет альвеолы. Сурфактант разрушает ассоциаты воды, снижая ее поверхностное натяжение и препятствуя спадению стенок альвеол. Синтез сурфактанта индуцируется кортизолом.
Синтез сурфактанта, субъединиц ENaC и 3Na+/2K+-АТФазы начинаются с 28 недели беременности, поэтому преждевременные роды для новорожденного грозят развитием синдрома дыхательной недостаточности.
3. Альвеолярные макрофаги
Альвеолярные макрофаги способны к свободному перемещению по альвеолам, но в основном концентрируются возле альвеоцитов II типа. Альвеолярные макрофаги экспрессируют индуцибельную NO-синтазу (iNOS). Синтез iNOS активируют IL-1, IL-10, клеточная стенка бактерий и их ДНК. iNOS продуцирует цитотоксичный NO, нейтрализующий бактерии, вирусы и опухолевые клетки.
4. Альвеолярный клиренс
Исходя из вышеописанных свойств клеток альвеол движение ионов и воды (альвеолярный клиренс) можно представить следующим образом: 1) альвеолы состоят из секретирующих (альвеоциты I типа) и реабсорбирующих клеток (альвеоциты II типа); 2) секретируемая жидкость направляется от альвеоцитов I типа к альвеоцитам II типа, поэтому ингалируемые частицы пыли и бактерии попадая на этот поток жидкости перемещаются в направлении альвеоцитов II типа (альвеолярный \"сток\"), где 3) нейтрализуются и фагоцитируются макрофагами. Избыток жидкости поступает в бронхиолы.

124. 1. Клиренс ингалируемых частиц
На клиренс ингалируемых частиц влияют: 1) реология слизи; 2) адгезивность слизи; и 3) биение рестичек реснитчатого эпителия.
1. Реология слизи
Реологические свойства (текучесть) слизи определяются соотношением между сульфатированных протеогликанов и концентрацией ионов Ca2+. Увеличение [Ca2+] в слизи нарушает текучесть слизи. Синтез сульфатируемых протеогликанов регулируется витамином A, поэтому дефицит этого витамина приводит к нарушению клиренса слизи, размножению бактерий и воспалению.
2. Адгезивность слизи
Адгезивность слизи прямо пропорциональна содержанию Cl– и сурфактанта.
Поверхностный эпителий тонко регулирует реологические и адгезивные свойство слизи благодаря избирательной реабсорбции ионов, секрецией сурфактанта и паракринной регуляции подслизистых желез.

125. Почка - парный орган, основной структурной единицей почек является нефрон. За 1 минуту в почках фильтруется 1000 - 1300 мл крови. Благодаря хорошему кровоснабжению, почки находятся в постоянном взаимодействии с другими тканями и органами и способны влиять на состояние внутренней среды всего организма.
ФУНКЦИИ ПОЧЕК:
1. ЭКСКРЕТОРНАЯ. Почками выводятся из организма:
а) конечные продукты катаболизма (например, такие продукты азотистого обмена, как мочевина, мочевая кислота, креатинин, а также продукты обезвреживания токсичных веществ).
б) избыток веществ, всосавшихся в кишечнике или образовавшихся в процессе катаболизма: вода, органические кислоты, витамины, гормоны и другие.
в) ксенобиотики - чужеродные вещества (лекарственные препараты, никотин).
2. ГОМЕОСТАТИЧЕСКАЯ. Почками регулируются:водный гомеостаз, солевой гомеостаз, кислотно-основное состояние
3. МЕТАБОЛИЧЕСКАЯ.
а) участие в углеводном, белковом, жировом обменах
б) синтез в почках некоторых биологически активных веществ: ренина, активной формы витамина D3 , эритропоэтина, простагландинов, кининов. Эти вещества оказывают влияние на процессы регуляции АД, свертывания крови, на фосфорно-кальциевый обмен, на созревание эритроцитов и на другие процессы.
ЭТАПЫ МОЧЕОБРАЗОВАНИЯ
Из компонентов плазмы крови почки образуют мочу и эффективно могут регулировать ее состав.
1. УЛЬТРАФИЛЬТРАЦИЯ
2. РЕАБСОРБЦИЯ
3. СЕКРЕЦИЯ
В процессе ультрафильтрации происходит образовние первичной мочи.
Кровь, двигаясь по сосудам почки, фильтруется в полости клубочка через поры соединительнотканной капсулы - особого фильтра, который состоит из 3-х слоев. 1-й слой - эндотелий кровеносных капилляров, который имеет поры большого размера. Через эти крупные поры проходят все компоненты крови, кроме форменных элементов и высокомолекулярных белков. 2-й слой - базальная мембрана, которая построена из коллагеновых нитей (фибрилл), образующих молекулярное “сито”. Диаметр пор - 4нм. Базальная мембрана не пропускает белки с молекулярной массой выше, чем 50кДа. 3-й слой - эпителиальные клетки капсулы, мембраны которых заряжены отрицательно, что не дает возможности отрицательно заряженным альбуминам плазмы крови проникать в первичную мочу. Форма трехслойных пор сложная и не соответствует форме белковых молекул плазмы крови. Это несоответствие предотвращает проникновение нормальных белковых молекул в первичную мочу. Если же структура, форма, заряд молекулы белка изменены по сравнению с нормальной белковой молекулой, то такой аномальный белок може пройти через фильтр и попасть в мочу. Это один из механизмов очистки плазмы крови от дефектных белков и восстановления ее нормального состава.
Таким образом, ультрафильтрат (первичная моча) в норме почти не содержит белков и пептидов (всего 3-4 г/л). Зато состав низкомолекулярных небелковых компонентов, содержание различных ионов в первичная моча такие же, как и в плазме крови. Поэтому первичную мочу иногда называют “безбелковым фильтратом плазмы крови”.
Количество образующегося ультрафильтрата зависит от величины движущей силы ультрафильтрации - гидростатического давления крови в сосудах клубочка (в норме оно составляет приблизительно 70 мм.рт.ст.).
Движущей силе ультрафильтрации противодействует онкотическое давление белков плазмы крови (около 25 мм.рт.ст.) и гидростатическое давление ультрафильтрата в полости капсулы (около 15 мм.рт.ст.).
Таким образом, движущая сила ультрафильтрации составляет:
70 - (25+15) = 30 (мм рт.ст.),и называется эффективным фильтрационным давлением.
Энергия АТФ в процессе ультрафильтрации не затрачивается.
Понятно, что понижение артериального давления и/или увеличение гидростатического давления в полости капсулы может приводить к замедлению, а при значительных изменениях и к полному прекращению образования первичной мочи (анурия).
В результате процесса ультрафильтрации образуется первичная моча. В сутки через почки человека проходит приблизительно 1500л крови, при этом образуется около 180 литров первичной мочи ( 125мл за 1 минуту).
Фильтрационную способность почек оценивают путем вычисления фильтрационного клиренса (коэффициента очищения) - для этого в кровь вводят определенные вещества, которые только фильтруются, но не реабсорбируются и не секретируются (полисахарид инулин, маннитол, креатинин).
Фильтрационный клиренс - это такой объем плазмы крови, который полностью очищается от нереабсорбируемого вещества за 1 минуту.Единицы измерения клиренса - мл (плазмы крови)/мин. У здорового человека ФК составляет около 125 мл/мин или 180 литров в сутки, т.е. это количество первичной мочи, образующейся в сутки.
Первичная моча, содержащая все низкомолекулярные компоненты крови и небольшое количество низкомолекулярных белков, подвергается реабсорбции в проксимальном канальце.

126. Почка - парный орган, основной структурной единицей почек является нефрон. За 1 минуту в почках фильтруется 1000 - 1300 мл крови. Благодаря хорошему кровоснабжению, почки находятся в постоянном взаимодействии с другими тканями и органами и способны влиять на состояние внутренней среды всего организма.
ФУНКЦИИ ПОЧЕК:
1. ЭКСКРЕТОРНАЯ. Почками выводятся из организма:
а) конечные продукты катаболизма (например, такие продукты азотистого обмена, как мочевина, мочевая кислота, креатинин, а также продукты обезвреживания токсичных веществ).
б) избыток веществ, всосавшихся в кишечнике или образовавшихся в процессе катаболизма: вода, органические кислоты, витамины, гормоны и другие.
в) ксенобиотики - чужеродные вещества (лекарственные препараты, никотин).
2. ГОМЕОСТАТИЧЕСКАЯ. Почками регулируются:водный гомеостаз, солевой гомеостаз, кислотно-основное состояние
3. МЕТАБОЛИЧЕСКАЯ.
а) участие в углеводном, белковом, жировом обменах
б) синтез в почках некоторых биологически активных веществ: ренина, активной формы витамина D3 , эритропоэтина, простагландинов, кининов. Эти вещества оказывают влияние на процессы регуляции АД, свертывания крови, на фосфорно-кальциевый обмен, на созревание эритроцитов и на другие процессы.
ЭТАПЫ МОЧЕОБРАЗОВАНИЯ
Из компонентов плазмы крови почки образуют мочу и эффективно могут регулировать ее состав.
1. УЛЬТРАФИЛЬТРАЦИЯ
2. РЕАБСОРБЦИЯ
3. СЕКРЕЦИЯ
Реабсорбция - это движение веществ из просвета канальца в кровь. Реабсорбции подвергаются почти все белки, попавшие в ультрафильтрат, и другие необходимые организму вещества. Поэтому суточные потери белково-пептидного компонента мочи не превышают 100-150 мг/сутки, хотя в первичную мочу может фильтроваться до 8-10 граммов белка в сутки. 85% ультрафильтрата реабсорбируется в проксимальном отделе канальца. Здесь реабсорбируются около 99% воды, необходимые организму питательные вещества (глюкоза, аминокислоты), многие минеральные компоненты, и частично - конечные продукты азотистого обмена (мочевина, мочевая кислота).
Имеются два механизма реабсорбции:
1) простая диффузия (по градиенту концентраций);
2) активный транспорт - происходит против градиента концентраций и требует затрат энергии (АТФ).
Ионы Na+ реабсорбируются с участием натриевого насоса - мембранного фермента Na,К-зависимой АТФазы. Этот фермент имеет 2 центра связывания: для натрия и для калия. После связывания с натрием и калием АТФаза меняет свою конформацию, в результате происходит перенос обоих ионов через мембрану эпителия почечных канальцев. При этом используется энергия гидролиза АТФ. Многие вещества, например глюкоза и аминокислоты, реабсорбируются в комплексе с ионами Na, т.е. энергия для переноса этих соединений выделяется в результате действия АТФ-азы. Аналогично протекает реабсорбция ионов Ca2+ и Mg2+ - в этом процессе участвует Ca2+,Mg2+-зависимая АТФаза. Кроме АТФаз в процессах активного транспорта участвуют особые транспортные белки-переносчики, которые называются транслоказами - они похожи по своим свойствам на ферменты:
- обладают способностью к избирательному связыванию с веществом, которое реабсорбируется (абсолютная и относительная избирательность);
- имеют предел работоспособности - уровень насыщаемости белка (подобно Vmax у ферментов). Он определяется не скоростью реабсорбции, а предельной концентрацией реабсорбируемого из первичной мочи вещества. Эта величина называется ПОЧЕЧНЫМ ПОРОГОМ РЕАБСОРБЦИИ. Кривая, отражающая процесс реабсорбции, похожа на кривую зависимости скорости ферментативной реакции от концентрации субстрата:
Почечный порог реабсорбции равен наименьшей концентрации реабсорбируемого вещества, при которой достигается транспортный максимум реабсорбции (ТМ). Транспортный максимум характеризует состояние почечных канальцев. ТМ равен скорости транспорта вещества белком-переносчиком в условиях насыщения его переносимым веществом.
Для глюкозы, например, почечный порог реабсорбции (ППР) равен 10-12 ммоль/л. При нормальной концентрации глюкозы в крови транспортные системы еще не полностью насыщаются глюкозой, поэтому глюкоза в моче не появляется, т.е. она полностью реабсорбируется.
Существуют изотранслоказы, которые также, как изоферменты, отличаются друг от друга величиной константы Михаэлиса. Например, в начале проксимального отдела канальца, где еще велика концентрация глюкозы в фильтрате, находятся транслоказы с Км=6ммоль/л. В конце проксимального отдела, где большая часть глюкозы уже реабсорбирована, Км транслоказ равна 0.35ммоль/л. Благодаря этим транслоказам, имеющим различное сродство к глюкозе, практически вся глюкоза реабсорбируется из первичной мочи. За сутки реабсорбируется:- около 179 л воды;- примерно 1 кг NaCl;- около 340 г NaHCO3;- около 170 г глюкозы и т.д.

127. Почка - парный орган, основной структурной единицей почек является нефрон. За 1 минуту в почках фильтруется 1000 - 1300 мл крови. Благодаря хорошему кровоснабжению, почки находятся в постоянном взаимодействии с другими тканями и органами и способны влиять на состояние внутренней среды всего организма.
ФУНКЦИИ ПОЧЕК:
1. ЭКСКРЕТОРНАЯ. Почками выводятся из организма:
а) конечные продукты катаболизма (например, такие продукты азотистого обмена, как мочевина, мочевая кислота, креатинин, а также продукты обезвреживания токсичных веществ).
б) избыток веществ, всосавшихся в кишечнике или образовавшихся в процессе катаболизма: вода, органические кислоты, витамины, гормоны и другие.
в) ксенобиотики - чужеродные вещества (лекарственные препараты, никотин).
2. ГОМЕОСТАТИЧЕСКАЯ. Почками регулируются:водный гомеостаз, солевой гомеостаз, кислотно-основное состояние
3. МЕТАБОЛИЧЕСКАЯ.
а) участие в углеводном, белковом, жировом обменах
б) синтез в почках некоторых биологически активных веществ: ренина, активной формы витамина D3 , эритропоэтина, простагландинов, кининов. Эти вещества оказывают влияние на процессы регуляции АД, свертывания крови, на фосфорно-кальциевый обмен, на созревание эритроцитов и на другие процессы.
ЭТАПЫ МОЧЕОБРАЗОВАНИЯ
Из компонентов плазмы крови почки образуют мочу и эффективно могут регулировать ее состав.
1. УЛЬТРАФИЛЬТРАЦИЯ
2. РЕАБСОРБЦИЯ
3. СЕКРЕЦИЯ
3. СЕКРЕЦИЯ
Канальцевая избирательная секреция похожа на реабсорбцию, но происходит в противоположном направлении - из крови в просвет канальцев. В основном секреция протекает в дистальной части канальца.
Процесс секреции также, как и процесс реабсорбции, протекает с затратой АТФ (активный транспорт) и характеризуется величиной транспортного максимума. Эта величина может служить характеристикой белков-переносчиков, обеспечивающих транспорт веществ.
Часто реабсорбция и секреция протекают одновременно - например, секреция ионов K+ происходит под действием Na,K-зависимой АТФазы. Только K+ секретируется, а Na+ реабсорбируется. Также секретируются Н+, NH4+.
Скорость секреции можно определить по выделению из организма с мочой различных красителей, которые выводятся почками только путем секреции. Для этого красители должны быть предварительно введены в кровь.
В результате во вторичной моче в течение суток остается от 1000 до 2000 мл жидкости , в которой растворены:
- от 12 до 36 г мочевины; - около 1 г креатинина; - примерно 1 г аммонийных солей; - примерно 0,5-1 г других продуктов азотистого обмена (в частности, в норме в моче могут присутствовать креатин, гиппуровая кислота, индикан и пигменты) - примерно 5-7 г минеральных солей - продукты обезвреживания токсических соединений (в незначительных количествах)
В процессе выполнения почками экскреторной функции обеспечивается их участие в поддержании водно-солевого баланса организма и кислотно-щелочного равновесия.



Комментарии:

Вы не можете оставлять комментарии. Пожалуйста, зарегистрируйтесь.