Реферат: Клетка

Цитология (греч. “цитос" - клетка, “логос" - наука) - наука изучающая строение, основные функции и роль клетки. Аспекты изучения цитологии - клетки многоклеточных животных, растений, одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли.

Дата добавления на сайт: 09 июля 2024


Скачать работу 'Клетка':


Клетка
Введение
Цитология (греч. “цитос" - клетка, “логос" - наука) - наука изучающая строение, основные функции и роль клетки. Аспекты изучения цитологии - клетки многоклеточных животных, растений, одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. А так же цитология изучает строение и химический состав клеток, внутриклеточные структуры и их функции, функции клеток в организме животных и растений, размножение и развитие клеток, адаптацию клеток к условиям окружающей среды.
Сегодня цитология напрямую зависит от других наук, так же как и они от нее.
Она имеет самые тесные связи с биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология – достаточно молодая наука, ее возраст всего около 100 лет, хотя термин “клетка” известен уже более 300 лет. В середине XVII в. Р. Гук, рассматривая тонкий срез пробки с помощью микроскопа увидел, что пробка состоит из маленьких ячеек - клеток. Тогда он впервые за всю историю человечества применил термин “клетка”.
Клеточная теория.
К середине XIX столетия накопились довольно обширные знания о клетке, и их основе Т. Шванн в 1838 году сформулировал клеточную теорию. Обобщив имевшиеся знания о клетке, он показал, что клетка представляет собой основную единицу строения всех живых организмов, и заявил, что клетки животных и растений сходны по своему строению. Эти положения стали важнейшими доказательствами единства происхождения всех живых организмов, единства всего органического мира. Т. Шванн внес в науку правильное понимание клетки как самостоятельной жизненной единицы, наименьшей единицы живого - вне клетки жизнь существовать не может.
Изучение химической организации и состава клетки привело к выводу, что именно химические процессы лежат в основе ее жизни и поддерживают процессы происходящие в ней. Что клетки всех организмов сходны по химическому составу, у них однотипно протекают основные процессы обмена веществ.
Современная клеточная - теория включает следующие положения:
Клетка – является основной единицей строения и развития всех живых организмов;
Клетки всех организмов сходны ( гомологичны ) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ как одноклеточных, так и многоклеточных;
Размножение клеток происходит путем деления материнской клетки на несколько одинаковых дочерних клеток;
В сложных многоклеточных организмах клетки сгруппированы по выполняемой ими функции и образуют ткани. Из тканей же состоят все органы организма, которые тесно связаны между собой и подчинены гуморальным и нервным системам регуляции.
Исследования клетки имеют большое значение для разгадки заболеваний.
Так как в клетках зарождаются и начинают развиваться патологические изменения, приводящие к возникновению злокачественных заболеваний. Для того чтобы понять роль клеток в развитии заболеваний, приведем несколько примеров. Одно из серьезных заболеваний человека - сахарный диабет .
Причиной его возникновения является недостаточная деятельность клеток поджелудочной железы, вырабатывающих гормон инсулин , который участвует в регуляции сахарного обмена организма. Злокачественные изменения, которые приводят к развитию раковых опухолей, также возникают в клетках. Такое заболевание как кокцидиоз - опасный для кроликов, кур, гусей и уток. Его возбудители паразитические простейшие - кокцидии проникают в клетки кишечного эпителия и печени, растут и размножаются в них, в скором времени полностью нарушают правильный обмен веществ в организме, а затем полностью разрушают клетки этих органов. У больных кокцидиозом животных сильно нарушается деятельность пищеварительной системы, и при отсутствии лечения животные погибают. Поэтому изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо ни только в биологии, но также в медицине и ветеринарии.
При изучении строения и функций клеток разнообразных одноклеточных и многоклеточных организмов показало, что по своему строению они разделяются на две группы. В первую группу входят бактерии и сине-зеленые водоросли. Эти организмы имеют более простое строение клеток. Их называют доядерными или прокариотами , так как у них нет оформленного ядра (греч. “картон” - ядро), а так же нет многих структур, которые называют органоидами . Во вторую группу входят все остальные организмы: от одноклеточных зеленых водорослей и простейших до высших цветковых растений, млекопитающих, в том числе и человека. Эти виды организмов имеют сложно устроенные клетки, которые называют ядерными или эукариотами . Эти клетки имеют ядро и органоиды, выполняющие специфические функции.
Есть еще одна группа организмов которая не относится ни к про- ни к эукариотам. Она представляет собой неклеточную форму жизни в нее входят вирусы , изучением которых занимается вирусология.
Строение и функции оболочки клетки
Клетка каждого из организмов, представляет собой целостную живую систему, которая состоит из трех неразрывно связанных между собой частей:
а) Оболочка клетки
Оболочка клетки напрямую взаимодействует с внешней средой и с соседними клетками (в многоклеточных организмах). Она состоит из наружного слоя и плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов клетку покрывает плотная оболочка, или клеточная стенка . У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает безопасность растительных клеток. Хотя клеточная стенка довольно плотная, но через ее стенку проходит вода, соли, молекулы многих органических веществ. Поверхностный слой клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Его нельзя увидеть в световой микроскоп и состоит он из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс . Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.
Плазматическая мембрана. Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны невелика, изучение ее строения и функций возможно только с помощью электронного микроскопа.
В состав плазматической мембраны входят липопротеиды (жиробелки). Расположены они упорядочено и соединены друг с другом химическими связями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют, так называемый, билипидный слой. Молекулы белков располагаются в слое липидов, погружаясь в него на разную глубину.
Молекулы белка расположены не стационарно, что обеспечивает динамичность плазматической мембраны.
Плазматическая мембрана (плазмолема) выполняет много важных функций, от которых завидят жизнедеятельность клеток: барьерная функция, скелет клетки, который придает ей определенную структуру. Одной из главных функций является транспорт веществ через мембрану. Так, в клетку поступают ионы гормоны аминокислоты (не белки), углеводы, жиры, а выводятся продукты синтеза и продукты жизнедеятельности клетки. Транспорт происходит при участии белков, из-за градиента концентрации и др.
Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность, хотя есть соединения с помощью щели (синапсы у животных).
Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.
На поверхности многих клеток животных, например различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, - микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание пищи.
Фагоцитоз. Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцита (греч. “фагео” - пожирать). В фагоците непосредственное участие принимает плазматическая мембрана. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в “мембранной упаковке” погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.
Цитоплазма. Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. Ядро, в норме, располагается в центральной части цитоплазмы. В ней сосредоточены и разнообразные включения - продукты клеточной деятельности, вакуоли. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы.
Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.
Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец - рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.
Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети - участие в синтезе белка, который осуществляется в рибосомах.
На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются в каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.
Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.
В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.
Митохондрии. В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) - митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула).
Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран - наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. “криста” - гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.
Митохондрии называют “силовыми станциями” клеток” так как их основная функция - синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.
Новые митохондрии образуются делением уже существующих в клетке митохондрий.
Пластиды. В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые - хлоропласты; красные, оранжевые и желтые - хромопласты; бесцветные - лейкопласты.
Хлоропласт. Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Хлоропласт - основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.
По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами - наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры - граны. Они сложены наподобие стопки монет.
В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.
Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.
Лейкопласты. находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.
Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.
Аппарат Гольджи. Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.
В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей . Все эти элементы составляют единый комплекс.
Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки - белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.
Лизосомы. Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.
К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль , внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.
Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.
Клеточный центр. В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца - центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.
Клеточные включения. К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.
Ядро. Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит...

Похожие материалы:

Тестовые задания: Развитие гистологии. Клетка